Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1985:6:185-93.

Carbon-13 and phosphorus-31 nuclear magnetic resonance studies of myocardial metabolism in live guinea pigs

  • PMID: 2859645

Carbon-13 and phosphorus-31 nuclear magnetic resonance studies of myocardial metabolism in live guinea pigs

K J Neurohr et al. Adv Myocardiol. 1985.

Abstract

Myocardial metabolism in live guinea pigs was investigated by 13C and 31P nuclear magnetic resonance (NMR) at 20.18 and 32.5 MHz, respectively. 13C NMR studies allowed monitoring of myocardial glycogen synthesis during intravenous infusion of D-[1-13C]glucose and insulin. Anoxia resulted in degradation of the labeled glycogen within 6 min and appearance of 13C label in lactic acid. Infusion of sodium [2-13C]acetate resulted in incorporation of label into the C-4, C-2, and C-3 positions of glutamate, reflecting "scrambling" of the label expected from tricarboxylic-acid-cycle activity. 31P NMR spectra of heart in live guinea pigs were obtained continuously in 20.5-sec time blocks during 3 min of anoxia, during subsequent reoxygenation, and, in separate animals, during terminal anoxia. Reversible anoxia resulted in rapid degradation of phosphocreatine (t1/2 = 54.5 +/- 2.5 sec), which recovered fully during reoxygenation. Heart inorganic phosphate increased during anoxia and returned to basal levels after oxygen was restored. During 3 min of anoxia, no significant changes in ATP levels or pH were detected.

PubMed Disclaimer

Similar articles

Publication types

MeSH terms

LinkOut - more resources