Skew log-concavity of the Boros-Moll sequences
- PMID: 28596695
- PMCID: PMC5437139
- DOI: 10.1186/s13660-017-1394-z
Skew log-concavity of the Boros-Moll sequences
Abstract
Let [Formula: see text] be a triangular array of numbers. We say that [Formula: see text] is skew log-concave if for any fixed n, the sequence [Formula: see text] is log-concave. In this paper, we show that the Boros-Moll sequences are almost skew log-concave.
Keywords: log-concavity; skew log-concavity; the Boros-Moll sequence.
References
-
- Boros G, Moll VH. A sequence of unimodal polynomials. J. Math. Anal. Appl. 1999;237:272–285. doi: 10.1006/jmaa.1999.6479. - DOI
-
- Moll VH. The evaluation of integrals: a personal story. Not. Am. Math. Soc. 2002;49(3):311–317.
-
- Kausers M, Paule P. A computer proof of Moll’s log-concavity conjecture. Proc. Am. Math. Soc. 2007;135(12):3847–3856. doi: 10.1090/S0002-9939-07-08912-5. - DOI
-
- Chen WYC, Xia EXW. The ratio monotonicity of Boros-Moll polynomials. Math. Comput. 2009;78:2269–2282. doi: 10.1090/S0025-5718-09-02223-6. - DOI
-
- Chen WYC, Xia EXW. A proof of Moll’s minimum conjecture. Eur. J. Comb. 2013;34:787–791. doi: 10.1016/j.ejc.2012.11.002. - DOI
LinkOut - more resources
Full Text Sources
Other Literature Sources