Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Jun 20;89(12):6351-6357.
doi: 10.1021/acs.analchem.7b01418. Epub 2017 Jun 9.

Continuous-Ink, Multiplexed Pen-Plotter Approach for Low-Cost, High-Throughput Fabrication of Paper-Based Microfluidics

Affiliations

Continuous-Ink, Multiplexed Pen-Plotter Approach for Low-Cost, High-Throughput Fabrication of Paper-Based Microfluidics

Reza Amin et al. Anal Chem. .

Abstract

There is an unmet need for high-throughput fabrication techniques for paper-based microanalytical devices, especially in limited resource areas. Fabrication of these devices requires precise and repeatable deposition of hydrophobic materials in a defined pattern to delineate the hydrophilic reaction zones. In this study, we demonstrated a cost- and time-effective method for high-throughput, easily accessible fabrication of paper-based microfluidics using a desktop pen plotter integrated with a custom-designed multipen holder. This approach enabled simultaneous printing with multiple printing heads and, thus, multiplexed fabrication. Moreover, we proposed an ink supply system connected to commercial technical pens to allow continuous flow of the ink, thereby increasing the printing capacity of the system. We tested the use of either hot- or cold-laminating layers to improve (i) the durability, stability, and mechanical strength of the paper-based devices and (ii) the seal on the back face of the chromatography paper to prevent wetting of the sample beyond the hydrophilic testing region. To demonstrate a potential application of the paper-based microfluidic devices fabricated by the proposed method, colorimetric urine assays were implemented and tested: nitrite, urobilinogen, protein, blood, and pH.

PubMed Disclaimer

Publication types

LinkOut - more resources