Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2017 May;141(5):3011.
doi: 10.1121/1.4982042.

Horseshoe bats and Old World leaf-nosed bats have two discrete types of pinna motions

Affiliations
Comparative Study

Horseshoe bats and Old World leaf-nosed bats have two discrete types of pinna motions

Xiaoyan Yin et al. J Acoust Soc Am. 2017 May.

Abstract

Horseshoe bats (Rhinolophidae) and the related Old World leaf-nosed bats (Hipposideridae) both show conspicuous pinna motions as part of their biosonar behaviors. In the current work, the kinematics of these motions in one species from each family (Rhinolophus ferrumequinum and Hipposideros armiger) has been analyzed quantitatively using three-dimensional tracking of landmarks placed on the pinna. The pinna motions that were observed in both species fell into two categories: In "rigid rotations" motions the geometry of the pinna was preserved and only its orientation in space was altered. In "open-close motions" the geometry of the pinna was changed which was evident in a change of the distances between the landmark points. A linear discriminant analysis showed that motions from both categories could be separated without any overlap in the analyzed data set. Hence, bats from both species have two separate types of pinna motions with apparently no transitions between them. The deformations associated with open-close pinna motions in Hipposideros armiger were found to be substantially larger compared to the wavelength associated with the largest pulse energy than in Rhinolophus ferrumequinum (137% vs 99%). The role of the two different motions in the biosonar behaviors of the animals remains to be determined.

PubMed Disclaimer

Publication types

LinkOut - more resources