Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Aug;29(8):403-408.
doi: 10.1002/chir.22713. Epub 2017 Jun 13.

Enantioselective cytotoxicity of ZnS:Mn quantum dots in A549 cells

Affiliations

Enantioselective cytotoxicity of ZnS:Mn quantum dots in A549 cells

V A Kuznetsova et al. Chirality. 2017 Aug.

Abstract

Chirality strongly influences many biological properties of materials, such as cell accumulation, enzymatic activity, and toxicity. In the past decade, it has been shown that quantum dots (QDs), fluorescent semiconductor nanoparticles with unique optical properties, can demonstrate optical activity due to chiral ligands bound on their surface. Optically active QDs could find potential applications in biomedical research, therapy, and diagnostics. Consequently, it is very important to investigate the interaction of QDs capped with chiral ligands with living cells. The aim of our study was to investigate the influence of the induced chirality of Mn-doped ZnS QDs on the viability of A549 cells. These QDs were stabilized with D- and L-cysteine using a ligand exchange technique. The optical properties of QDs were studied using UV-Vis, photoluminescence (PL), and circular dichroism (CD) spectroscopy. The cytotoxicity of QDs was investigated by high content screening analysis. It was found that QDs stabilized by opposite ligand enantiomers, had identical PL and UV-Vis spectra and mirror-imaged CD spectra, but displayed different cytotoxicity: QDs capped with D-cysteine had greater cytotoxicity than L-cysteine capped QDs.

Keywords: Mn-doped ZnS quantum dots; chirality; cytotoxicity; enantioselectivity; semiconductor nanocrystals; zinс sulfide.

PubMed Disclaimer

LinkOut - more resources