Lynch Syndrome (Hereditary Nonpolyposis Colorectal Cancer)
- PMID: 28613748
- Bookshelf ID: NBK431096
Lynch Syndrome (Hereditary Nonpolyposis Colorectal Cancer)
Excerpt
The Epidemiology of the Syndrome
Colorectal cancer is the third-most common cancer in men and women and the second leading cause of cancer mortality in the United States, with an estimated 152,020 new cases and 52,550 deaths in 2023. While most colorectal cancers are sporadic, inherited mutations cause approximately 5% to 10% of cases. The most common hereditary form of colorectal cancer is Lynch syndrome, also called hereditary nonpolyposis colorectal cancer (HNPCC). Identifying patients with Lynch syndrome is important because their lifetime risk of colorectal cancer is 80%, and up to 60% for endometrial cancer. Other primary cancers part of Lynch syndrome include gastric, ovarian, small bowel, urothelial (ureter, renal pelvis, and bladder), prostate, biliary tract, pancreatic, adrenocortical, brain cancers (glioblastoma), sebaceous gland adenomas, and keratoacanthomas.
The History of Lynch Syndrome
In 1962, a medical intern named Henry Lynch learned that a young hospitalized farm worker suffering from alcohol poisoning was certain he would die young of cancer due to the prevalence of cancer in his family. Dr. Lynch decided to investigate this family. He bought a camper van equipped with basic laboratory instruments. He spent weekends for the next 2 years touring rural Nebraska, Kansas, and Missouri, collecting medical records, histories, pathology reports, and blood samples from extended family members. He discovered that an unusually high number died of colon cancer before age 50. He could not find any plausible explanation save for genetic transmission.
He presented his findings in 1964 and applied for several grants to allow him to investigate further, but was consistently turned down as these cancers were attributed to environmental causes. Dr Lynch continued his research, but his theories were widely discredited until molecular genetics techniques developed in the 1980s led to the discovery of the mismatch repair gene deficiencies and associated microsatellite instabilities found in these heritable cancers. HNPCC was renamed Lynch syndrome in his honor in 1984. Dr Lynch, the father of cancer genetics, is credited with facilitating many breakthroughs in cancer genetics, including identifying the breast-ovarian cancer syndrome and the BRCA genes and creating the entire field of cancer genomics.
Copyright © 2025, StatPearls Publishing LLC.
Conflict of interest statement
Sections
- Continuing Education Activity
- Introduction
- Etiology
- Epidemiology
- Pathophysiology
- History and Physical
- Evaluation
- Treatment / Management
- Differential Diagnosis
- Medical Oncology
- Prognosis
- Complications
- Deterrence and Patient Education
- Pearls and Other Issues
- Enhancing Healthcare Team Outcomes
- Review Questions
- References
References
-
- Lim A, Rao P, Matin SF. Lynch syndrome and urologic malignancies: a contemporary review. Curr Opin Urol. 2019 Jul;29(4):357-363. - PubMed
-
- Shih AR, Kradin RL. Malignant mesothelioma in Lynch syndrome: A report of two cases and a review of the literature. Am J Ind Med. 2019 May;62(5):448-452. - PubMed
-
- Dominguez-Valentin M, Sampson JR, Seppälä TT, Ten Broeke SW, Plazzer JP, Nakken S, Engel C, Aretz S, Jenkins MA, Sunde L, Bernstein I, Capella G, Balaguer F, Thomas H, Evans DG, Burn J, Greenblatt M, Hovig E, de Vos Tot Nederveen Cappel WH, Sijmons RH, Bertario L, Tibiletti MG, Cavestro GM, Lindblom A, Della Valle A, Lopez-Köstner F, Gluck N, Katz LH, Heinimann K, Vaccaro CA, Büttner R, Görgens H, Holinski-Feder E, Morak M, Holzapfel S, Hüneburg R, Knebel Doeberitz MV, Loeffler M, Rahner N, Schackert HK, Steinke-Lange V, Schmiegel W, Vangala D, Pylvänäinen K, Renkonen-Sinisalo L, Hopper JL, Win AK, Haile RW, Lindor NM, Gallinger S, Le Marchand L, Newcomb PA, Figueiredo JC, Thibodeau SN, Wadt K, Therkildsen C, Okkels H, Ketabi Z, Moreira L, Sánchez A, Serra-Burriel M, Pineda M, Navarro M, Blanco I, Green K, Lalloo F, Crosbie EJ, Hill J, Denton OG, Frayling IM, Rødland EA, Vasen H, Mints M, Neffa F, Esperon P, Alvarez K, Kariv R, Rosner G, Pinero TA, Gonzalez ML, Kalfayan P, Tjandra D, Winship IM, Macrae F, Möslein G, Mecklin JP, Nielsen M, Møller P. Cancer risks by gene, age, and gender in 6350 carriers of pathogenic mismatch repair variants: findings from the Prospective Lynch Syndrome Database. Genet Med. 2020 Jan;22(1):15-25. - PMC - PubMed
-
- Gupta D, Heinen CD. The mismatch repair-dependent DNA damage response: Mechanisms and implications. DNA Repair (Amst) 2019 Jun;78:60-69. - PubMed
Publication types
LinkOut - more resources
Full Text Sources