Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Feb 1;8(2):1163-1168.
doi: 10.1039/c6sc03177c. Epub 2016 Sep 2.

The HOF structures of nitrotetraphenylethene derivatives provide new insights into the nature of AIE and a way to design mechanoluminescent materials

Affiliations

The HOF structures of nitrotetraphenylethene derivatives provide new insights into the nature of AIE and a way to design mechanoluminescent materials

Tao Yu et al. Chem Sci. .

Abstract

This study probes the effect of intramolecular rotations on aggregation-induced emission (AIE) and leads to a kind of supramolecular mechanoluminescent material. Two hydrogen-bonded organic frameworks (HOFs), namely HOFTPE3N and HOFTPE4N, have been constructed from nitro-substituted tetraphenylethene (TPE) building blocks, namely tris(4-nitrophenyl)phenylethene (TPE3N) and tetrakis(4-nitrophenyl)ethene (TPE4N). Using single-crystal X-ray diffraction analysis, two types of pores are observed in the HOFTPE4N supramolecular structure. The pore sizes are 5.855 Å × 5.855 Å (α pores) and 7.218 Å × 7.218 Å (β pores). Powder X-ray diffraction and differential scanning calorimetry studies further reveal that the α pores, which contain nitrophenyl rings, quench the emission of HOFTPE4N. This emission can be turned on by breaking the α pores in the HOFs by grinding the sample. Temperature-dependent emission studies demonstrate that the emission quenching of HOFTPE4N is attributed to the intramolecular rotations of nitro-substituted phenyl units within the space of the α pores. These results clearly reveal AIE by controlling the intramolecular rotations, which can serve as a basis for developing mechanoluminescent materials.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1. Single crystal structures of TPE2N, HOFTPE3N and HOFTPE4N ; (a) single crystal structure of TPE2N; (b) single crystal structure of HOFTPE3N viewed down the b axis; (c) single crystal structure of HOFTPE4N viewed down the c axis (the nitro substituted phenyls in pore α are labeled in yellow); (d) single crystal structure of HOFTPE4N viewed down the b axis (the nitro substituted phenyls in pore α are labeled in yellow); (e) structure of pore α; (f) structure of pore β.
Fig. 2
Fig. 2. Mechanoluminescent properties of HOFTPE4N: (a) emission spectra of HOFTPE4N and ground HOFTPE4N, and (b) photographs of the mechanoluminescent properties of HOFTPE4N and the quenching processes.
Fig. 3
Fig. 3. pXRD spectra of TPE4N in different states: (a) crystal simulated, (b) HOF state, (c) ground HOF state, (d) amorphous state, (e) heated HOF state, (f) dichloromethane fumed amorphous state, and (g) heated amorphous state.
Fig. 4
Fig. 4. Temperature-emission spectra of HOFTPE4N. The inset shows photographs of the samples at 298 and 77 K.

References

    1. Luo J., Xie Z., Lam J. W. Y., Cheng L., Qiu C., Kwok H. S., Zhan X., Liu D., Zhu D., Tang B. Z. Chem. Commun. 2001;18:1740. - PubMed
    1. An B.-K., Lee D.-S., Lee J.-S., Park Y.-S., Song H.-S., Park S. Y. J. Am. Chem. Soc. 2004;126:10232. - PubMed
    2. Hong Y., Lam J. W. Y., Tang B. Z. Chem. Commun. 2009;29:4332. - PubMed
    3. Zhao Z., Lam J. W. Y., Tang B. Z. Curr. Org. Chem. 2010;14:2109.
    4. Yang Z., Chi Z., Yu T., Zhang X., Chen M., Xu B., Liu S., Zhang Y., Xu J. J. Mater. Chem. 2009;19:5541.
    5. Chung J. W., An B. K., Park S. Y. Chem. Mater. 2008;20:6750.
    6. Shiraishi K., Kashiwabara T., Sanji T., Tanaka M. New J. Chem. 2009;33:1680.
    7. Mei J., Leung N. L. C., Kwok R. T. K., Lam J. W. Y., Tang B. Z. Chem. Rev. 2015;115:11718. - PubMed
    1. Yu G., Yin S., Liu Y., Chen J., Xu X., Sun X., Ma D., Zhan X., Peng Q., Shuai Z., Tang B. Z., Zhu D., Fang W., Luo Y. J. Am. Chem. Soc. 2005;127:6335. - PubMed
    2. Huang J., Sun N., Yang J., Tang R., Li Q., Ma D., Qin J., Li Z. J. Mater. Chem. 2012;22:12001.
    3. Chan C. Y. K., Zhao Z., Lam J. W. Y., Liu J., Chen S., Lu P., Faisal M., Chen X., Sung H. H. Y., Kwok H. S., Ma Y., Williams I. D., Wong K. S., Tang B. Z. Adv. Funct. Mater. 2012;22:378.
    4. Su H. C., Fadhel O., Yang C. J., Cho T. Y., Fave C., Hissler M., Wu C. C., Reau R. J. Am. Chem. Soc. 2006;128:983. - PubMed
    1. Li H., Chi Z., Xu B., Zhang X., Yang Z., Li X., Liu S., Zhang Y., Xu J. J. Mater. Chem. 2010;20:6103.
    2. Chi Z., Zhang X., Xu B., Zhou X., Ma C., Zhang Y., Liu S., Xu J. Chem. Soc. Rev. 2012;41:3878. - PubMed
    3. Li G., Ren X., Shan G., Che W., Zhu D., Yan L., Su Z., Bryce M. R. Chem. Commun. 2015;51:13036. - PubMed
    1. Li Z., Dong Y., Mi B., Tang Y., Haeussler M., Tong H., Dong Y., Lam J. W. Y., Ren Y., Sung H. H. Y., Wong K. S., Gao P., Williams I. D., Kwok H. S., Tang B. Z. J. Phys. Chem. B. 2005;109:10061. - PubMed
    2. Zheng Y. S., Hu Y. J. J. Org. Chem. 2009;74:5660. - PubMed
    3. Liu Y., Tang Y., Barashkov N. N., Irgibaeva I. S., Lam J. W. Y., Hu R., Birimzhanova D., Yu Y., Tang B. Z. J. Am. Chem. Soc. 2010;132:13951. - PubMed
    4. Dong Y., Zhao W. and Li C. Y., Cn. Patent, CN104003886A, 2014.