Breathing Analysis Using Thermal and Depth Imaging Camera Video Records
- PMID: 28621708
- PMCID: PMC5491982
- DOI: 10.3390/s17061408
Breathing Analysis Using Thermal and Depth Imaging Camera Video Records
Abstract
The paper is devoted to the study of facial region temperature changes using a simple thermal imaging camera and to the comparison of their time evolution with the pectoral area motion recorded by the MS Kinect depth sensor. The goal of this research is to propose the use of video records as alternative diagnostics of breathing disorders allowing their analysis in the home environment as well. The methods proposed include (i) specific image processing algorithms for detecting facial parts with periodic temperature changes; (ii) computational intelligence tools for analysing the associated videosequences; and (iii) digital filters and spectral estimation tools for processing the depth matrices. Machine learning applied to thermal imaging camera calibration allowed the recognition of its digital information with an accuracy close to 100% for the classification of individual temperature values. The proposed detection of breathing features was used for monitoring of physical activities by the home exercise bike. The results include a decrease of breathing temperature and its frequency after a load, with mean values -0.16 °C/min and -0.72 bpm respectively, for the given set of experiments. The proposed methods verify that thermal and depth cameras can be used as additional tools for multimodal detection of breathing patterns.
Keywords: breathing disorders detection; depth sensors; facial temperature distribution; machine learning; multimodal signals; thermography.
Conflict of interest statement
The authors declare no conflict of interest.
Figures







Similar articles
-
Microsoft Kinect Visual and Depth Sensors for Breathing and Heart Rate Analysis.Sensors (Basel). 2016 Jun 28;16(7):996. doi: 10.3390/s16070996. Sensors (Basel). 2016. PMID: 27367687 Free PMC article.
-
Sleep Apnea Detection with Polysomnography and Depth Sensors.Sensors (Basel). 2020 Mar 2;20(5):1360. doi: 10.3390/s20051360. Sensors (Basel). 2020. PMID: 32121672 Free PMC article.
-
Machine Learning in Rehabilitation Assessment for Thermal and Heart Rate Data Processing.IEEE Trans Neural Syst Rehabil Eng. 2018 Jun;26(6):1209-1214. doi: 10.1109/TNSRE.2018.2831444. IEEE Trans Neural Syst Rehabil Eng. 2018. PMID: 29877845
-
Thermal Cameras for Continuous and Contactless Respiration Monitoring.Sensors (Basel). 2024 Dec 19;24(24):8118. doi: 10.3390/s24248118. Sensors (Basel). 2024. PMID: 39771853 Free PMC article. Review.
-
Three-dimensional cameras and skeleton pose tracking for physical function assessment: A review of uses, validity, current developments and Kinect alternatives.Gait Posture. 2019 Feb;68:193-200. doi: 10.1016/j.gaitpost.2018.11.029. Epub 2018 Nov 22. Gait Posture. 2019. PMID: 30500731 Review.
Cited by
-
Contact and Remote Breathing Rate Monitoring Techniques: A Review.IEEE Sens J. 2021 Apr 12;21(13):14569-14586. doi: 10.1109/JSEN.2021.3072607. eCollection 2021 Jul 1. IEEE Sens J. 2021. PMID: 35789086 Free PMC article.
-
A Broader Look: Camera-Based Vital Sign Estimation across the Spectrum.Yearb Med Inform. 2019 Aug;28(1):102-114. doi: 10.1055/s-0039-1677914. Epub 2019 Aug 16. Yearb Med Inform. 2019. PMID: 31419822 Free PMC article. Review.
-
Machine learning empowered COVID-19 patient monitoring using non-contact sensing: An extensive review.J Pharm Anal. 2022 Apr;12(2):193-204. doi: 10.1016/j.jpha.2021.12.006. Epub 2022 Jan 4. J Pharm Anal. 2022. PMID: 35003825 Free PMC article. Review.
-
Advances in Respiratory Monitoring: A Comprehensive Review of Wearable and Remote Technologies.Biosensors (Basel). 2024 Feb 6;14(2):90. doi: 10.3390/bios14020090. Biosensors (Basel). 2024. PMID: 38392009 Free PMC article. Review.
-
Motion Assessment for Accelerometric and Heart Rate Cycling Data Analysis.Sensors (Basel). 2020 Mar 10;20(5):1523. doi: 10.3390/s20051523. Sensors (Basel). 2020. PMID: 32164235 Free PMC article.
References
-
- Lee J., Hong M., Ryu S. Sleep monitoring system using kinect sensor. Int. J. Distrib. Sens. Netw. 2015;2015 doi: 10.1155/2015/875371. - DOI
-
- Procházka A., Vyšata O., Vališ M., Ťupa O., Schatz M., Mařík V. Bayesian classification and analysis of gait disorders using image and depth sensors of Microsoft Kinect. Digit. Signal Prog. 2015;47:169–177. doi: 10.1016/j.dsp.2015.05.011. - DOI
-
- Procházka A., Vyšata O., Vališ M., Ťupa O., Schatz M., Mařík V. Use of Image and depth sensors of the Microsoft Kinect for the detection of gait disorders. Neural Comput. Appl. 2015;26:1621–1629. doi: 10.1007/s00521-015-1827-x. - DOI
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources