Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Jun;40(6):1295-1308.
doi: 10.1109/TPAMI.2017.2711024. Epub 2017 Jun 1.

A Bayesian Approach to Policy Recognition and State Representation Learning

A Bayesian Approach to Policy Recognition and State Representation Learning

Adrian Sosic et al. IEEE Trans Pattern Anal Mach Intell. 2018 Jun.

Abstract

Learning from demonstration (LfD) is the process of building behavioral models of a task from demonstrations provided by an expert. These models can be used, e.g., for system control by generalizing the expert demonstrations to previously unencountered situations. Most LfD methods, however, make strong assumptions about the expert behavior, e.g., they assume the existence of a deterministic optimal ground truth policy or require direct monitoring of the expert's controls, which limits their practical use as part of a general system identification framework. In this work, we consider the LfD problem in a more general setting where we allow for arbitrary stochastic expert policies, without reasoning about the optimality of the demonstrations. Following a Bayesian methodology, we model the full posterior distribution of possible expert controllers that explain the provided demonstration data. Moreover, we show that our methodology can be applied in a nonparametric context to infer the complexity of the state representation used by the expert, and to learn task-appropriate partitionings of the system state space.

PubMed Disclaimer

LinkOut - more resources