Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Jun 28;139(25):8570-8578.
doi: 10.1021/jacs.7b03198. Epub 2017 Jun 19.

Regiodivergent Glycosylations of 6-Deoxy-erythronolide B and Oleandomycin-Derived Macrolactones Enabled by Chiral Acid Catalysis

Affiliations

Regiodivergent Glycosylations of 6-Deoxy-erythronolide B and Oleandomycin-Derived Macrolactones Enabled by Chiral Acid Catalysis

Jia-Hui Tay et al. J Am Chem Soc. .

Abstract

This work describes the first example of using chiral catalysts to control site-selectivity for the glycosylations of complex polyols such as 6-deoxyerythronolide B and oleandomycin-derived macrolactones. The regiodivergent introduction of sugars at the C3, C5, and C11 positions of macrolactones was achieved by selecting appropriate chiral acids as catalysts or through introduction of stoichiometric boronic acid-based additives. BINOL-based chiral phosphoric acids (CPAs) were used to catalyze highly selective glycosylations at the C5 positions of macrolactones (up to 99:1 rr), whereas the use of SPINOL-based CPAs resulted in selectivity switch and glycosylation of the C3 alcohol (up to 91:9 rr). Additionally, the C11 position of macrolactones was selectively functionalized through traceless protection of the C3/C5 diol with boronic acids prior to glycosylation. Investigation of the reaction mechanism for the CPA-controlled glycosylations revealed the involvement of covalently linked anomeric phosphates rather than oxocarbenium ion pairs as the reactive intermediates.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Regioselective glycosylation of 6-dEB
Figure 2
Figure 2
Theoretical studies of the reaction mechanism
Figure 3
Figure 3
Preparation and characterization by NMR of the covalently-linked phosphate intermediates 10, 12 and 14
Scheme 1
Scheme 1
Single-pot traceless protection/glycosylation of the C11-position of 6-dEB

References

    1. Huang G, Lv M, Huang K, Xu H. Mini Rev Med Chem. 2016;16:1013. - PubMed
    2. Huang G, Mei X. Curr Drug Targets. 2014;15:780. - PubMed
    1. Blixt O, Razi N. Glycoscience. 2008:1361.
    2. Koeller KM, Wong C-H. Chem Rev. 2000;100:4465. - PubMed
    1. Liang D-M, Liu J-H, Wu H, Wang B-B, Zhu H-J, Qiao J-J. Chem Soc Rev. 2015;44:8350. - PubMed
    1. Selected examples of chiral catalyst-controlled regioselective protection of chiral polyols: Sculimbrene BR, Miller SJ. J Am Chem Soc. 2001;123:10125.Hu G, Vasella A. Helv Chim Acta. 2002;85:4369.Sculimbrene BR, Morgan AJ, Miller SJ. J Am Chem Soc. 2002;124:11653.Sculimbrene BR, Xu Y, Miller SJ. J Am Chem Soc. 2004;126:13182.Morgan AJ, Wang YK, Roberts MF, Miller SJ. J Am Chem Soc. 2004:15370.Kawabata T, Muramatsu W, Nishio T, Shibata T, Schedel HJ. Am Chem Soc. 2007;129:12890–12895.Muramatsu W, Mishiro K, Ueda Y, Furuta T, Kawabata T. Eur J Org Chem. 2010;5:827–831.Jordan PA, Kayser-Bricker KJ, Miller SJ. Proc Nat Acad Sci USA. 2010;107:20620–20624.Longo CM, Wei Y, Roberts MF, Miller SJ. Angew Chem Int Ed. 2009;48:4158–4161.Fiori KW, Puchlopek ALA, Miller SJ. Nature Chem. 2009;1:630–634.Zhao Y, Rodrigo J, Hoveyda AH, Snapper ML. Nature. 2006;443:67.Zhao Y, Mitra AW, Hoveyda AH, Snapper ML. Angew Chem Int Ed. 2007;46:8741.Worthy AD, Sun X, Tan KL. J Am Chem Soc. 2012;134:7321.Ueda Y, Furuta T, Kawabata T. Angew Chem Int Ed. 2015;54:11966.Sun X, Lee H, Lee S, Tan KL. Nature Chem. 2013;5:790.Allen CL, Miller SJ. Org Lett. 2013;15:6178.Kim JH, Coric I, Palumbo C, List B. J Am Chem Soc. 2015;137:1778.Chandler BD, Burkhardt AL, Foley K, Cullis C, Driscoll D, D’Amore NR, Miller SJ. J Am Chem Soc. 2014;136:412.Chen IH, Kou KGM, Le DN, Rathbun CM, Dong VM. Chem Eur J. 2014;20:5013.Xiao G, Clintron-Rosado DA, Glazier DA, Xi B, Liu C, Liu P, Tang W. J Am Che Soc. 2017;139:4346.Yang H, Cao KS, Zheng WH. Chem Commun. 2017;53:3737.

    1. Chiral catalyst-controlled site-selective derivatization of erythromycin A: Lewis CA, Miller SJ. Angew Chem Int Ed. 2006;118:5744–5747.Lewis CA, Merkel J, Miller SJ. Bioorg Med Chem Lett. 2008;18:6007–6011.. Chiral catalyst-controlled site-selective derivatization of vancomycin and teicoplanin: Pathak TP, Miller SJ. J Am Chem Soc. 2012;134:6120.Folwer BS, Laemmerhold KM, Miller SJ. J Am Chem Soc. 2012;134:9755.Pathak TP, Miller SJ. J Am Chem Soc. 2013;135:8415.Han S, Miller SJ. J Am Chem Soc. 2013;135:12414.. Chiral catalyst-controlled site-selective diversification of apoptolidine A: Lewis CA, Longcore KE, Miller SJ, Wender PA. J Nat Prod. 2009;72:1864.. Chiral catalyst-controlled site-selective derivatization of cardiotonic steroid glycosides: Yoshida K, Furuta T, Kawabata T. Tetrahedron Lett. 2010;51:4830.Ueda Y, Mishiro K, Yoshida K, Furuta T, Kawabata T. J Org Chem. 2012;77:7850.Tong ML, Huber F, Kaptouom EST, Cellnik T, Kirsch SF. Chem Commun. 2017;53:3086.

Publication types