Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Aug;38(2):1163-1171.
doi: 10.3892/or.2017.5726. Epub 2017 Jun 16.

The inhibitory effects of deep-sea water on doxorubicin‑induced epithelial-mesenchymal transition

Affiliations

The inhibitory effects of deep-sea water on doxorubicin‑induced epithelial-mesenchymal transition

So-Young Chun et al. Oncol Rep. 2017 Aug.

Abstract

It has been revealed that the induction of epithelial‑mesenchymal transition (EMT) is associated with drug resistance, leading to tumor recurrence and metastasis. Recent studies have shown that chemotherapeutic agents, besides their therapeutic effects, can induce EMT and enhance invasive and metastatic properties of tumor cells. Previously, we revealed that deep-sea water (DSW) exhibited antimetastatic effects in several human cancer cell lines. In the present study, we investigated the effects of DSW on doxorubicin-induced EMT in MCF-7 human breast cancer cells. When treated with doxorubicin, MCF-7 cells displayed characteristics of EMT, such as, mesenchymal markers (vimentin and fibronectin) and EMT-related transcription factors (Slug and Snail-1) in their RNA expression. However, DSW efficiently inhibited doxorubicin-induced EMT, revealing the decreased expression of vimentin, fibronectin, Slug and Snail-1. Moreover, treatment of MCF-7 cells with DSW significantly suppressed their increased migratory ability by doxorubicin as determined by wound-healing assay. We further demonstrated that the inhibitory effects of DSW on doxorubicin-induced EMT appeared to be mediated by inhibition of the ERK1/2, p38 MAPK and PI3K/AKT signaling pathways. Collectively, our data revealed that DSW has the potential to abolish undesired side-effects of doxorubicin by targeting EMT.

PubMed Disclaimer

Similar articles

MeSH terms