Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Jul 12;139(27):9376-9381.
doi: 10.1021/jacs.7b04955. Epub 2017 Jul 3.

Switching between Anion-Binding Catalysis and Aminocatalysis with a Rotaxane Dual-Function Catalyst

Affiliations

Switching between Anion-Binding Catalysis and Aminocatalysis with a Rotaxane Dual-Function Catalyst

Katarzyna Eichstaedt et al. J Am Chem Soc. .

Abstract

The "off" state for aminocatalysis by a switchable [2]rotaxane is shown to correspond to an "on" state for anion-binding catalysis. Conversely, the aminocatalysis "on" state of the dual-function rotaxane is inactive in anion-binding catalysis. Switching between the different states is achieved through the stimuli-induced change of position of the macrocycle on the rotaxane thread. The anion-binding catalysis results from a pair of triazolium groups that act together to CH-hydrogen-bond to halide anions when the macrocycle is located on an alternative (ammonium) binding site, stabilizing the in situ generation of benzhydryl cation and oxonium ion intermediates from activated alkyl halides. The aminocatalysis and anion-binding catalysis sites of the dual-function rotaxane catalyst can be sequentially concealed or revealed, enabling catalysis of both steps of a tandem reaction process.

PubMed Disclaimer

Publication types