Identifying Spectra of Activity and Therapeutic Niches for Ceftazidime-Avibactam and Imipenem-Relebactam against Carbapenem-Resistant Enterobacteriaceae
- PMID: 28630202
- PMCID: PMC5571343
- DOI: 10.1128/AAC.00642-17
Identifying Spectra of Activity and Therapeutic Niches for Ceftazidime-Avibactam and Imipenem-Relebactam against Carbapenem-Resistant Enterobacteriaceae
Abstract
We determined imipenem, imipenem-relebactam, ceftazidime, and ceftazidime-avibactam MICs against 100 CRE isolates that underwent whole-genome sequencing. Klebsiella pneumoniae carbapenemases (KPCs) were the most common carbapenemases. Forty-six isolates carried extended-spectrum β-lactamases (ESBLs). With the addition of relebactam, imipenem susceptibility increased from 8% to 88%. With the addition of avibactam, ceftazidime susceptibility increased from 0% to 85%. Neither imipenem-relebactam nor ceftazidime-avibactam was active against metallo-β-lactamase (MBL) producers. Ceftazidime-avibactam (but not imipenem-relebactam) was active against OXA-48-like producers, including a strain not harboring any ESBL. Major OmpK36 porin mutations were independently associated with higher imipenem-relebactam MICs (P < 0.0001) and showed a trend toward independent association with higher ceftazidime-avibactam MICs (P = 0.07). The presence of variant KPC-3 was associated with ceftazidime-avibactam resistance (P < 0.0001). In conclusion, imipenem-relebactam and ceftazidime-avibactam had overlapping spectra of activity and niches in which each was superior. Major OmpK36 mutations in KPC-K. pneumoniae may provide a foundation for stepwise emergence of imipenem-relebactam and ceftazidime-avibactam resistance.
Keywords: CRE; Enterobacteriaceae; KPC; ceftazidime-avibactam; drug resistance mechanisms; imipenem-relabactam; mechanisms of resistance; porins.
Copyright © 2017 American Society for Microbiology.
Figures
References
-
- Haidar G, Alkroud A, Cheng S, Churilla TM, Churilla BM, Shields RK, Doi Y, Clancy CJ, Nguyen MH. 2016. Association between the presence of aminoglycoside-modifying enzymes and in vitro activity of gentamicin, tobramycin, amikacin, and plazomicin against Klebsiella pneumoniae carbapenemase- and extended-spectrum-beta-lactamase-producing Enterobacter species. Antimicrob Agents Chemother 60:5208–5214. doi:10.1128/AAC.00869-16. - DOI - PMC - PubMed
-
- Almaghrabi R, Clancy CJ, Doi Y, Hao B, Chen L, Shields RK, Press EG, Iovine NM, Townsend BM, Wagener MM, Kreiswirth B, Nguyen MH. 2014. Carbapenem-resistant Klebsiella pneumoniae strains exhibit diversity in aminoglycoside-modifying enzymes, which exert differing effects on plazomicin and other agents. Antimicrob Agents Chemother 58:4443–4451. doi:10.1128/AAC.00099-14. - DOI - PMC - PubMed
-
- Szabo D, Silveira F, Hujer AM, Bonomo RA, Hujer KM, Marsh JW, Bethel CR, Doi Y, Deeley K, Paterson DL. 2006. Outer membrane protein changes and efflux pump expression together may confer resistance to ertapenem in Enterobacter cloacae. Antimicrob Agents Chemother 50:2833–2835. doi:10.1128/AAC.01591-05. - DOI - PMC - PubMed
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Miscellaneous
