Site-directed mutagenesis under the direction of in silico protein docking modeling reveals the active site residues of 3-ketosteroid-Δ1-dehydrogenase from Mycobacterium neoaurum
- PMID: 28634712
- DOI: 10.1007/s11274-017-2310-x
Site-directed mutagenesis under the direction of in silico protein docking modeling reveals the active site residues of 3-ketosteroid-Δ1-dehydrogenase from Mycobacterium neoaurum
Abstract
3-Ketosteroid-Δ1-dehydrogenases (KsdD) from Mycobacterium neoaurum could transform androst-4-ene-3,17-dione (AD) to androst-1,4-diene-3,17-dione. This reaction has a significant effect on the product of pharmaceutical steroid. The crystal structure and active site residues information of KsdD from Mycobacterium is not yet available, which result in the engineering of KsdD is tedious. In this study, by the way of protein modeling and site-directed mutagenesis, we find that, Y122, Y125, S138, E140 and Y541 from the FAD-binding domain and Y365 from the catalytic domain play a key role in this transformation. Compared with the wild type, the decline in AD conversion for mutants illustrated that Y125, Y365, and Y541 were essential to the function of KsdD. Y122, S138 and E140 contributed to the catalysis of KsdD. The following analysis revealed the catalysis mechanism of these mutations in KsdD of Mycobacterium. These information presented here facilitate the manipulation of the catalytic properties of the enzyme to improve its application in the pharmaceutical steroid industry.
Keywords: 3-Ketosteroid-Δ1-dehydrogenase; Androst-4-ene-3,17-dione; Biotransformation; Mycobacterium neoaurum; Site-directed mutagenesis.
Similar articles
-
A mutant form of 3-ketosteroid-Δ(1)-dehydrogenase gives altered androst-1,4-diene-3, 17-dione/androst-4-ene-3,17-dione molar ratios in steroid biotransformations by Mycobacterium neoaurum ST-095.J Ind Microbiol Biotechnol. 2016 May;43(5):691-701. doi: 10.1007/s10295-016-1743-9. Epub 2016 Feb 17. J Ind Microbiol Biotechnol. 2016. PMID: 26886757
-
Efficient androst-1,4-diene-3,17-dione production by co-expressing 3-ketosteroid-Δ1 -dehydrogenase and catalase in Bacillus subtilis.J Appl Microbiol. 2017 Jan;122(1):119-128. doi: 10.1111/jam.13336. J Appl Microbiol. 2017. PMID: 27797429
-
Genetic differences in ksdD influence on the ADD/AD ratio of Mycobacterium neoaurum.J Ind Microbiol Biotechnol. 2015 Apr;42(4):507-13. doi: 10.1007/s10295-014-1577-2. Epub 2015 Jan 9. J Ind Microbiol Biotechnol. 2015. PMID: 25572208
-
Application of microbial 3-ketosteroid Δ1-dehydrogenases in biotechnology.Biotechnol Adv. 2021 Jul-Aug;49:107751. doi: 10.1016/j.biotechadv.2021.107751. Epub 2021 Apr 4. Biotechnol Adv. 2021. PMID: 33823268 Review.
-
The role and mechanism of microbial 3-ketosteroid Δ1-dehydrogenases in steroid breakdown.J Steroid Biochem Mol Biol. 2019 Jul;191:105366. doi: 10.1016/j.jsbmb.2019.04.015. Epub 2019 Apr 13. J Steroid Biochem Mol Biol. 2019. PMID: 30991094 Review.
Cited by
-
Engineering of 3-ketosteroid-∆1-dehydrogenase based site-directed saturation mutagenesis for efficient biotransformation of steroidal substrates.Microb Cell Fact. 2018 Sep 10;17(1):141. doi: 10.1186/s12934-018-0981-0. Microb Cell Fact. 2018. PMID: 30200975 Free PMC article.
-
Active tyrosine phenol-lyase aggregates induced by terminally attached functional peptides in Escherichia coli.J Ind Microbiol Biotechnol. 2020 Aug;47(8):563-571. doi: 10.1007/s10295-020-02294-4. Epub 2020 Jul 31. J Ind Microbiol Biotechnol. 2020. PMID: 32737623 Free PMC article.
-
Biotransformation of Phytosterols into Androstenedione-A Technological Prospecting Study.Molecules. 2022 May 15;27(10):3164. doi: 10.3390/molecules27103164. Molecules. 2022. PMID: 35630641 Free PMC article. Review.
References
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources