Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Jun 20;19(12):2413-2422.
doi: 10.1016/j.celrep.2017.05.076.

A Tonoplast P3B-ATPase Mediates Fusion of Two Types of Vacuoles in Petal Cells

Affiliations
Free article

A Tonoplast P3B-ATPase Mediates Fusion of Two Types of Vacuoles in Petal Cells

Marianna Faraco et al. Cell Rep. .
Free article

Abstract

It is known that plant cells can contain multiple distinct vacuoles; however, the abundance of multivacuolar cells and the mechanisms underlying vacuolar differentiation and communication among different types of vacuoles remain unknown. PH1 and PH5 are tonoplast P-ATPases that form a heteromeric pump that hyper-acidifies the central vacuole (CV) of epidermal cells in petunia petals. Here, we show that the sorting of this pump and other vacuolar proteins to the CV involves transit through small vacuoles: vacuolinos. Vacuolino formation is controlled by transcription factors regulating pigment synthesis and transcription of PH1 and PH5. Trafficking of proteins from vacuolinos to the central vacuole is impaired by misexpression of vacuolar SNAREs as well as mutants for the PH1 component of the PH1-PH5 pump. The finding that PH1-PH5 and these SNAREs interact strongly suggests that structural tonoplast proteins can act as tethering factors in the recognition of different vacuolar types.

Keywords: SNARE complex; membrane fusion; membrane recognition; multiple vacuoles; tethering factors.

PubMed Disclaimer

Publication types

Substances

LinkOut - more resources