Local application of bacteria improves safety of Salmonella -mediated tumor therapy and retains advantages of systemic infection
- PMID: 28637010
- PMCID: PMC5564822
- DOI: 10.18632/oncotarget.18392
Local application of bacteria improves safety of Salmonella -mediated tumor therapy and retains advantages of systemic infection
Abstract
Cancer is a devastating disease and a large socio-economic burden. Novel therapeutic solutions are on the rise, although a cure remains elusive. Application of microorganisms represents an ancient therapeutic strategy, lately revoked and refined via simultaneous attenuation and amelioration of pathogenic properties. Salmonella Typhimurium has prevailed in preclinical development. Yet, using virulent strains for systemic treatment might cause severe side effects. In the present study, we highlight a modified strain based on Salmonella Typhimurium UK-1 expressing hexa-acylated Lipid A. We corroborate improved anti-tumor properties of this strain and investigate to which extent an intra-tumoral (i.t.) route of infection could help improve safety and retain advantages of systemic intravenous (i.v.) application. Our results show that i.t. infection exhibits therapeutic efficacy against CT26 and F1.A11 tumors similar to a systemic route of inoculation. Moreover, i.t. application allows extensive dose titration without compromising tumor colonization. Adverse colonization of healthy organs was generally reduced via i.t. infection and accompanied by less body weight loss of the murine host. Despite local application, adjuvanticity remained, and a CT26-specific CD8+ T cell response was effectively stimulated. Most interestingly, also secondary tumors could be targeted with this strategy, thereby extending the unique tumor targeting ability of Salmonella. The i.t. route of inoculation may reap the benefits of systemic infection and aid in safety assurance while directing potency of an oncolytic vector to where it is most needed, namely the primary tumor.
Keywords: E. coli; Intra-tumoral injection; Salmonella; bacteria mediated tumor therapy; murine tumor model.
Conflict of interest statement
K.Z. is a general manager of Symbio Gruppe GmbH & Co KG, the company responsible for commercializing Symbioflor-2. Involvement was limited to strain provision, supportive information, and financial aid for an extended period of research.
Figures






References
-
- Hoyert DL. 75 years of mortality in the United States, 1935-2010. NCHS Data Brief. 2012;88:1–8. - PubMed
-
- Heron M. Deaths: leading causes for 2010. Natl Vital Stat Rep. 2013;62:1–97. - PubMed
-
- Caldwell JC. Demographers and the study of mortality: scope, perspectives, and theory. Ann N Y Acad Sci. 2001;954:19–34. - PubMed
-
- Cohen JE. Life expectancy. Demogr Res. 2011;24:251–6.
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Research Materials