Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Jun 21;8(1):27.
doi: 10.1038/s41467-017-00055-z.

Plasmon-induced selective carbon dioxide conversion on earth-abundant aluminum-cuprous oxide antenna-reactor nanoparticles

Affiliations

Plasmon-induced selective carbon dioxide conversion on earth-abundant aluminum-cuprous oxide antenna-reactor nanoparticles

Hossein Robatjazi et al. Nat Commun. .

Abstract

The rational combination of plasmonic nanoantennas with active transition metal-based catalysts, known as 'antenna-reactor' nanostructures, holds promise to expand the scope of chemical reactions possible with plasmonic photocatalysis. Here, we report earth-abundant embedded aluminum in cuprous oxide antenna-reactor heterostructures that operate more effectively and selectively for the reverse water-gas shift reaction under milder illumination than in conventional thermal conditions. Through rigorous comparison of the spatial temperature profile, optical absorption, and integrated electric field enhancement of the catalyst, we have been able to distinguish between competing photothermal and hot-carrier driven mechanistic pathways. The antenna-reactor geometry efficiently harnesses the plasmon resonance of aluminum to supply energetic hot-carriers and increases optical absorption in cuprous oxide for selective carbon dioxide conversion to carbon monoxide with visible light. The transition from noble metals to aluminum based antenna-reactor heterostructures in plasmonic photocatalysis provides a sustainable route to high-value chemicals and reaffirms the practical potential of plasmon-mediated chemical transformations.Plasmon-enhanced photocatalysis holds promise for the control of chemical reactions. Here the authors report an Al@Cu2O heterostructure based on earth abundant materials to transform CO2 into CO at significantly milder conditions.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing financial interests.

Figures

Fig. 1
Fig. 1
Characterization of plasmonic photocatalysts. a TEM image of the pristine Al NCs with nominal size before and b after growth of Cu2O shell around Al core. The scale bars in a and b are 50 nm. c HRTEM image of Al/Al2O3/Cu2O showing the Cu2O layer is highly polycrystalline. The scale bar is 5 nm. d High-angle annular dark field scanning transmission electron micrograph (HAADF-STEM) of the Al@Cu2O particles in low magnification and higher resolution (inset) indicating different Z-contrast for the core and the shell materials. The scale bars for low-resolution and inset images are 400, and 50 nm, respectively. eh Energy-dispersive X-ray (EDX) mapping showing the distribution of Al e, Cu f and O g, and their overlay h
Fig. 2
Fig. 2
Plasmon-enhanced rWGS. a The impact of visible light intensity on the rate of CO formation on photocatalysts prepared from Cu2O, Al NCs and Al@Cu2O. b The apparent external quantum efficiency (EQE) calculated from measured reaction rate in a and plotted against photon flux
Fig. 3
Fig. 3
Light-driven vs. thermal-driven activity characterization for rWGS. a Spatial temperature mapping of the catalysts surface during illumination of Al NCs/γ-Al2O3 in air under visible light intensity of 10 W cm−2. b Steady-state temperature monitoring for oxide supported plasmonic nanoparticles compared to pure oxide support with and without irradiation in air. c Typical gas chromatogram of the chamber output during light (7 W cm−2) and thermal driven (350 °C) rWGS on Al@Cu2O. d The overall rate of products formation as a function of applied temperature in purely thermal-driven (light off) rWGS for oxide supported Al NCs and Al@Cu2O (unfilled data points). For comparison, the reaction rates during the light-induced process (10 W cm−2) are shown at the corresponding recorded temperatures for oxide supported Al NCs and Al@Cu2O (filled data points)
Fig. 4
Fig. 4
Distinguishing between plasmon-induced carrier-assisted and photothermal heating for rWGS on Al@Cu2O. a The measured EQE as a function of illumination wavelength for oxide-supported Al@Cu2O compared to Al vs. illumination wavelength. b Numerically calculated local electric field strength |E(r)|2 in Al core (left axis) and Cu2O shell (right axis). c A simulated absorbed fraction in 100 nm diameter Al core, 15 nm thick Cu2O shell and total structure placed on γ-Al2O3 in air. d Comparison between experimentally measured heat density and ensemble Monte-Carlo simulation vs. illumination wavelength for oxide-supported Al@Cu2O nanoparticles in air. e, f The absorption efficiency of oxide-supported Al@Cu2O nanoparticles at e 400 nm and f 800 nm obtained from ensemble Monte-Carlo calculation. The scales in e and f are based on the sample holder dimensions and volume of oxide-supported Al@Cu2O nanoparticles loaded into the sample holder. The calculated heat density corresponding to 400 and 800 nm are assigned in d
Fig. 5
Fig. 5
Structure and mechanism of plasmon-induced carrier-assisted rWGS on Al@Cu2O. a Energy band diagram of Al@Cu2O for plasmon-mediated carrier generation for injection into unoccupied state of CO2 for C–O bond activation. b Schematic of plasmon-induced carrier-driven rWGS on Al@Cu2O

References

    1. Hagen, J. Industrial Catalysis: A Practical Approach. 3rd edn (Wiley, 2015).
    1. Ross, J. R. H. Heterogeneous Catalysis. Fundamentals and Applications (Elsevier, 2011).
    1. Clements A. D., Firth, M., Hubbard, V., Lazonby, L. J. & Waddington, D. The Essential Chemical Industry. 5th edn (Chemical Industry Education Centre, 2010).
    1. Linic S, Christopher P, Ingram DB. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat. Mater. 2011;10:911–921. doi: 10.1038/nmat3151. - DOI - PubMed
    1. Christopher P, Xin H, Linic S. Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures. Nat. Chem. 2011;3:467–472. - PubMed

Publication types