Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Sep;65(3):199-205.
doi: 10.1111/lam.12768. Epub 2017 Aug 6.

The effect of hospital biocide sodium dichloroisocyanurate on the viability and properties of Clostridium difficile spores

Affiliations

The effect of hospital biocide sodium dichloroisocyanurate on the viability and properties of Clostridium difficile spores

L T Joshi et al. Lett Appl Microbiol. 2017 Sep.

Abstract

Clostridium difficile is the primary cause of healthcare-associated diarrhoea globally and produces spores which are resistant to commonly used biocides and are able persist on contaminated surfaces for months. This study examined the effect of sublethal concentrations of the biocide sodium dichloroisocyanurate (NaDCC) on the viability of spores produced by 21 clinical isolates of C. difficile representing a range of PCR ribotypes. Spores exposed to 500 ppm NaDCC for 10 min exhibited between a 4-6 log10 reduction in viability which was independent of spore PCR ribotype. The effect of sublethal concentrations of biocide on the surface properties of exosporium positive and negative clinical isolates was determined using a spore adhesion to hydrocarbon (SATH) assay. These isolates differed markedly in their responses suggesting that exposure to biocide can have a profound effect on hydrophobicity and thus the ability of spores to adhere to surfaces. This raises the intriguing possibility that sublethal exposure to NaDCC could inadvertently promote the spread of the pathogen in healthcare facilities.

Significance and impact of the study: This study is the first to report on changes in Clostridium difficile spore surface property after exposure to sublethal levels of the commonly used biocide sodium dichloroisocyanurate. The implications of these changes to the spore surface include increased adherence of the spores to inorganic surfaces which can directly contribute to persistence and spread of spores within the hospital environment.

Keywords: Clostridium difficile; biocide; spores; sublethal; transmission; viability.

PubMed Disclaimer

MeSH terms