Rural and Urban Differences in Air Quality, 2008-2012, and Community Drinking Water Quality, 2010-2015 - United States
- PMID: 28640797
- PMCID: PMC5829865
- DOI: 10.15585/mmwr.ss6613a1
Rural and Urban Differences in Air Quality, 2008-2012, and Community Drinking Water Quality, 2010-2015 - United States
Abstract
Problem/condition: The places in which persons live, work, and play can contribute to the development of adverse health outcomes. Understanding the differences in risk factors in various environments can help to explain differences in the occurrence of these outcomes and can be used to develop public health programs, interventions, and policies. Efforts to characterize urban and rural differences have largely focused on social and demographic characteristics. A paucity of national standardized environmental data has hindered efforts to characterize differences in the physical aspects of urban and rural areas, such as air and water quality.
Reporting period: 2008-2012 for air quality and 2010-2015 for water quality.
Description of system: Since 2002, CDC's National Environmental Public Health Tracking Program has collaborated with federal, state, and local partners to gather standardized environmental data by creating national data standards, collecting available data, and disseminating data to be used in developing public health actions. The National Environmental Public Health Tracking Network (i.e., the tracking network) collects data provided by national, state, and local partners and includes 21 health outcomes, exposures, and environmental hazards. To assess environmental factors that affect health, CDC analyzed three air-quality measures from the tracking network for all counties in the contiguous United States during 2008-2012 and one water-quality measure for 26 states during 2010-2015. The three air-quality measures include 1) total number of days with fine particulate matter (PM2.5) levels greater than the U.S. Environmental Protection Agency's (EPA's) National Ambient Air Quality Standards (NAAQS) for 24-hour average PM2.5 (PM2.5 days); 2) mean annual average ambient concentrations of PM2.5 in micrograms per cubic meter (mean PM2.5); and 3) total number of days with maximum 8-hour average ozone concentrations greater than the NAAQS (ozone days). The water-quality measure compared the annual mean concentration for a community water system (CWS) to the maximum contaminant level (MCL) defined by EPA for 10 contaminants: arsenic, atrazine, di(2-ethylhexyl) phthalate (DEHP), haloacetic acids (HAA5), nitrate, perchloroethene (PCE), radium, trichloroethene (TCE), total trihalomethanes (TTHM), and uranium. Findings are presented by urban-rural classification scheme: four metropolitan (large central metropolitan, large fringe metropolitan, medium metropolitan, and small metropolitan) and two nonmetropolitan (micropolitan and noncore) categories. Regression modeling was used to determine whether differences in the measures by urban-rural categories were statistically significant.
Results: Patterns for all three air-quality measures suggest that air quality improves as areas become more rural (or less urban). The mean total number of ozone days decreased from 47.54 days in large central metropolitan counties to 3.81 days in noncore counties, whereas the mean total number of PM2.5 days decreased from 11.21 in large central metropolitan counties to 0.95 in noncore counties. The mean average annual PM2.5 concentration decreased from 11.15 μg/m3 in large central metropolitan counties to 8.87 μg/m3 in noncore counties. Patterns for the water-quality measure suggest that water quality improves as areas become more urban (or less rural). Overall, 7% of CWSs reported at least one annual mean concentration greater than the MCL for all 10 contaminants combined. The percentage increased from 5.4% in large central metropolitan counties to 10% in noncore counties, a difference that was significant, adjusting for U.S. region, CWS size, water source, and potential spatial correlation. Similar results were found for two disinfection by-products, HAA5 and TTHM. Arsenic was the only other contaminant with a significant result. Medium metropolitan counties had 3.1% of CWSs reporting at least one annual mean greater than the MCL, compared with 2.4% in large central counties.
Interpretation: Noncore (rural) counties experienced fewer unhealthy air-quality days than large central metropolitan counties, likely because of fewer air pollution sources in the noncore counties. All categories of counties had a mean annual average PM2.5 concentration lower than the EPA standard. Among all CWSs analyzed, the number reporting one or more annual mean contaminant concentrations greater the MCL was small. The water-quality measure suggests that water quality worsens as counties become more rural, in regards to all contaminants combined and for the two disinfection by-products individually. Although significant differences were found for the water-quality measure, the odds ratios were very small, making it difficult to determine whether these differences have a meaningful effect on public health. These differences might be a result of variations in water treatment practices in rural versus urban counties.
Public health action: Understanding the differences between rural and urban areas in air and water quality can help public health departments to identify, monitor, and prioritize potential environmental public health concerns and opportunities for action. These findings suggest a continued need to develop more geographically targeted, evidence-based interventions to prevent morbidity and mortality associated with poor air and water quality.
Similar articles
-
Potentially Excess Deaths from the Five Leading Causes of Death in Metropolitan and Nonmetropolitan Counties - United States, 2010-2017.MMWR Surveill Summ. 2019 Nov 8;68(10):1-11. doi: 10.15585/mmwr.ss6810a1. MMWR Surveill Summ. 2019. PMID: 31697657
-
Preventable Premature Deaths from the Five Leading Causes of Death in Nonmetropolitan and Metropolitan Counties, United States, 2010-2022.MMWR Surveill Summ. 2024 May 2;73(2):1-11. doi: 10.15585/mmwr.ss7302a1. MMWR Surveill Summ. 2024. PMID: 38687830 Free PMC article.
-
Health-Related Behaviors by Urban-Rural County Classification - United States, 2013.MMWR Surveill Summ. 2017 Feb 3;66(5):1-8. doi: 10.15585/mmwr.ss6605a1. MMWR Surveill Summ. 2017. PMID: 28151923 Free PMC article.
-
Trends in Excess Morbidity and Mortality Associated with Air Pollution above American Thoracic Society-Recommended Standards, 2008-2017.Ann Am Thorac Soc. 2019 Jul;16(7):836-845. doi: 10.1513/AnnalsATS.201812-914OC. Ann Am Thorac Soc. 2019. PMID: 31112414 Review.
-
Ambient Air Quality Standards and Policies in Eastern Mediterranean Countries: A Review.Int J Public Health. 2023 Feb 20;68:1605352. doi: 10.3389/ijph.2023.1605352. eCollection 2023. Int J Public Health. 2023. PMID: 36891223 Free PMC article. Review.
Cited by
-
Ambient PM2.5 temporal variation and source apportionment in Mbarara, Uganda.Aerosol Air Qual Res. 2024 Apr;24:230203. doi: 10.4209/aaqr.230203. Epub 2024 Jan 5. Aerosol Air Qual Res. 2024. PMID: 38947180 Free PMC article.
-
Rural-urban differences in personality traits and well-being in adulthood.J Pers. 2024 Feb;92(1):73-87. doi: 10.1111/jopy.12818. Epub 2023 Feb 16. J Pers. 2024. PMID: 36725776 Free PMC article.
-
Factors associated with nonsyndromic anotia and microtia, Texas, 1999-2014.Birth Defects Res. 2023 Jan 1;115(1):67-78. doi: 10.1002/bdr2.2130. Epub 2022 Nov 17. Birth Defects Res. 2023. PMID: 36398384 Free PMC article.
-
Association of Socio-Demographic and Climatic Factors with the Duration of Hospital Stay of Under-Five Children with Severe Pneumonia in Urban Bangladesh: An Observational Study.Children (Basel). 2021 Nov 11;8(11):1036. doi: 10.3390/children8111036. Children (Basel). 2021. PMID: 34828747 Free PMC article.
-
Landscape analysis of environmental data sources for linkage with SEER cancer patients database.J Natl Cancer Inst Monogr. 2024 Aug 1;2024(65):132-144. doi: 10.1093/jncimonographs/lgae015. J Natl Cancer Inst Monogr. 2024. PMID: 39102880 Free PMC article.
References
-
- US Department of Health and Human Services. Healthy people 2020: social determinants of health. 2017. https://www.healthypeople.gov/2020/topics-objectives/topic/social-determ...
-
- Ingram DD, Franco SJ. 2013 NCHS urban-rural classification scheme for counties. Vital Health Stat 2 2014;166:1–73. - PubMed
-
- Eberhardt MS, Ingram DD, Makuc DM. Urban and rural health chartbook: health, United States, 2001. Hyattsville, MD: National Center for Health Statistics, CDC; 2001.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Research Materials