High-Speed and Scalable Whole-Brain Imaging in Rodents and Primates
- PMID: 28641108
- DOI: 10.1016/j.neuron.2017.05.017
High-Speed and Scalable Whole-Brain Imaging in Rodents and Primates
Abstract
Subcellular resolution imaging of the whole brain and subsequent image analysis are prerequisites for understanding anatomical and functional brain networks. Here, we have developed a very high-speed serial-sectioning imaging system named FAST (block-face serial microscopy tomography), which acquires high-resolution images of a whole mouse brain in a speed range comparable to that of light-sheet fluorescence microscopy. FAST enables complete visualization of the brain at a resolution sufficient to resolve all cells and their subcellular structures. FAST renders unbiased quantitative group comparisons of normal and disease model brain cells for the whole brain at a high spatial resolution. Furthermore, FAST is highly scalable to non-human primate brains and human postmortem brain tissues, and can visualize neuronal projections in a whole adult marmoset brain. Thus, FAST provides new opportunities for global approaches that will allow for a better understanding of brain systems in multiple animal models and in human diseases.
Keywords: cell distribution; human post-mortem brain; non-human primate brain; subcellular resolution; whole-brain imaging.
Copyright © 2017 Elsevier Inc. All rights reserved.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
