Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Sep:57:154-160.
doi: 10.1016/j.gaitpost.2017.06.002. Epub 2017 Jun 4.

Effects of hip joint centre mislocation on gait kinematics of children with cerebral palsy calculated using patient-specific direct and inverse kinematic models

Affiliations
Free article

Effects of hip joint centre mislocation on gait kinematics of children with cerebral palsy calculated using patient-specific direct and inverse kinematic models

Hans Kainz et al. Gait Posture. 2017 Sep.
Free article

Abstract

Joint kinematics can be calculated by Direct Kinematics (DK), which is used in most clinical gait laboratories, or Inverse Kinematics (IK), which is mainly used for musculoskeletal research. In both approaches, joint centre locations are required to compute joint angles. The hip joint centre (HJC) in DK models can be estimated using predictive or functional methods, while in IK models can be obtained by scaling generic models. The aim of the current study was to systematically investigate the impact of HJC location errors on lower limb joint kinematics of a clinical population using DK and IK approaches. Subject-specific kinematic models of eight children with cerebral palsy were built from magnetic resonance images and used as reference models. HJC was then perturbed in 6mm steps within a 60mm cubic grid, and kinematic waveforms were calculated for the reference and perturbed models. HJC perturbations affected only hip and knee joint kinematics in a DK framework, but all joint angles were affected when using IK. In the DK model, joint constraints increased the sensitivity of joint range-of-motion to HJC location errors. Mean joint angle offsets larger than 5° were observed for both approaches (DK and IK), which were larger than previously reported for healthy adults. In the absence of medical images to identify the HJC, predictive or functional methods with small errors in anterior-posterior and medial-lateral directions and scaling procedures minimizing HJC location errors in the anterior-posterior direction should be chosen to minimize the impact on joint kinematics.

Keywords: Cerebral palsy; Direct kinematics; Error propagation; Gait analysis; Hip joint centre; Inverse kinematics; Joint angles; Kinematics; Musculoskeletal model; Patient specific.

PubMed Disclaimer