Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2017 Jun 21:17:65.
doi: 10.1186/s12935-017-0434-6. eCollection 2017.

HOTAIR: a key regulator in gynecologic cancers

Affiliations
Review

HOTAIR: a key regulator in gynecologic cancers

Jing Li et al. Cancer Cell Int. .

Abstract

Long non-coding RNAs (lncRNAs) play critical roles in the initiation and progression of human cancers. HOX transcript antisense RNA (HOTAIR) is an lncRNA localized to the mammalian HOXC gene cluster; it can interact with polycomb repressive complex 2 and the lysine-specific histone demethylase/CoREST/REST complex, and it manipulates the expression of various genes. HOTAIR promotes tumor invasion and metastasis by silencing tumor suppressors, and activating oncogenes and signaling pathways. HOTAIR is deregulated in many human cancers; despite its critical roles in health and disease, the underlying mechanisms governing HOTAIR function are unknown. In this review, we summarize the recent findings on the roles of HOTAIR in gynecologic cancers.

Keywords: Cell cycle; Chemoresistance; HOTAIR; Invasion; Metastasis; Radioresistance; lncRNAs.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
a the location of HOTAIR in human chromosome 12; b the schematic illustration of HOTAIR functions. SUZ12, EED and EZH2 are the three components of PRC complex; CoREST, REST and LSD1 are the three components of LSD1/CoREST/REST complex

Similar articles

Cited by

References

    1. Bertone P, Stolc V, Royce TE, Rozowsky JS, Urban AE, Zhu X, Rinn JL, Tongprasit W, Samanta M, Weissman S, et al. Global identification of human transcribed sequences with genome tiling arrays. Science. 2004;306(5705):2242–2246. doi: 10.1126/science.1103388. - DOI - PubMed
    1. Carninci P, Kasukawa T, Katayama S, Gough J, Frith MC, Maeda N, Oyama R, Ravasi T, Lenhard B, Wells C, et al. The transcriptional landscape of the mammalian genome. Science. 2005;309(5740):1559–1563. doi: 10.1126/science.1112014. - DOI - PubMed
    1. Chen LL, Carmichael GG. Long noncoding RNAs in mammalian cells: what, where, and why? Wiley Interdiscipl Rev RNA. 2010;1(1):2–21. - PubMed
    1. Lipovich L, Johnson R, Lin CY. MacroRNA underdogs in a microRNA world: evolutionary, regulatory, and biomedical significance of mammalian long non-protein-coding RNA. Biochim Biophys Acta. 2010;1799(9):597–615. doi: 10.1016/j.bbagrm.2010.10.001. - DOI - PubMed
    1. Kapranov P, Cheng J, Dike S, Nix DA, Duttagupta R, Willingham AT, Stadler PF, Hertel J, Hackermuller J, Hofacker IL, et al. RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science. 2007;316(5830):1484–1488. doi: 10.1126/science.1138341. - DOI - PubMed

LinkOut - more resources