Analysis of the Gap Junction-dependent Transfer of miRNA with 3D-FRAP Microscopy
- PMID: 28654065
- PMCID: PMC5608475
- DOI: 10.3791/55870
Analysis of the Gap Junction-dependent Transfer of miRNA with 3D-FRAP Microscopy
Abstract
Small antisense RNAs, like miRNA and siRNA, play an important role in cellular physiology and pathology and, moreover, can be used as therapeutic agents in the treatment of several diseases. The development of new, innovative strategies for miRNA/siRNA therapy is based on an extensive knowledge of the underlying mechanisms. Recent data suggest that small RNAs are exchanged between cells in a gap junction-dependent manner, thereby inducing gene regulatory effects in the recipient cell. Molecular biological techniques and flow cytometric analysis are commonly used to study the intercellular exchange of miRNA. However, these methods do not provide high temporal resolution, which is necessary when studying the gap junctional flux of molecules. Therefore, to investigate the impact of miRNA/siRNA as intercellular signaling molecules, novel tools are needed that will allow for the analysis of these small RNAs at the cellular level. The present protocol describes the application of three-dimensional fluorescence recovery after photobleaching (3D-FRAP) microscopy to elucidating the gap junction-dependent exchange of miRNA molecules between cardiac cells. Importantly, this straightforward and non-invasive live-cell imaging approach allows for the visualization and quantification of the gap junctional shuttling of fluorescently labeled small RNAs in real time, with high spatio-temporal resolution. The data obtained by 3D-FRAP confirm a novel pathway of intercellular gene regulation, where small RNAs act as signaling molecules within the intercellular network.
References
-
- Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998;391(6669):806–811. - PubMed
-
- Grimm D. Small silencing RNAs: state-of-the-art. Adv Drug Deliv Rev. 2009;61(9):672–703. - PubMed
-
- Raghunathan S, Patel BM. Therapeutic implications of small interfering RNA in cardiovascular diseases. Fundam Clin Pharmacol. 2013;27(1):1–20. - PubMed
-
- Sluijter JPG. MicroRNAs in Cardiovascular Regenerative Medicine: Directing Tissue Repair and Cellular Differentiation. ISRN Vasc Med. 2013. pp. 1–16.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous