Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Aug;40(2):576-582.
doi: 10.3892/ijmm.2017.3043. Epub 2017 Jun 26.

1-Methyl-L-tryptophan promotes the apoptosis of hepatic stellate cells arrested by interferon-γ by increasing the expression of IFN-γRβ, IRF-1 and FAS

Affiliations

1-Methyl-L-tryptophan promotes the apoptosis of hepatic stellate cells arrested by interferon-γ by increasing the expression of IFN-γRβ, IRF-1 and FAS

Ji Eun Oh et al. Int J Mol Med. 2017 Aug.

Abstract

Liver fibrosis, a precursor to cirrhosis, is the result of the deposition of extracellular matrix (ECM) proteins and is mediated primarily by activated hepatic stellate cells (HSCs). In this study, we investigated the anti-fibrotic effects of interferon (IFN)-γ in activated HSCs in vitro and whether cell viability would be decreased by the inhibition of indoleamine 2,3-dioxygemase (IDO), which is responsible for cell cycle arrest. Following treatment with IFN-γ, cell signaling pathways and DNA content were analyzed to assess the inactivation of HSCs or the decrease in HSC proliferation. The IDO inhibitor, 1-methyl-L-tryptophan (1-MT), was used to determine whether IDO plays a key role in the regulation of activated HSCs, as IFN-γ increases the expression of IDO. IFN-γ significantly inhibited the growth of HSCs and downregulated the expression of α-smooth muscle actin (α-SMA) in the HSCs. IDO expression was markedly increased by IFN-γ through signal transducer and activator of transcription 1 (STAT1) activation and resulted in the depletion of tryptophan. This depletion induced G1 cell cycle arrest. When the cells were released from IFN-γ-mediated G1 cell cycle arrest by treatment with 1-MT, the apoptosis of the HSCs was markedly increased through the induction of IFN-γRβ, interferon regulatory factor (IRF-1) and FAS. Our results thus suggest that the inhibition of IDO enhances the suppression of activated HSCs, and therefore co-treatment with IFN-γ and 1-MT may be applied to ameliorate liver fibrosis.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms