Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Jun 13:8:1012.
doi: 10.3389/fmicb.2017.01012. eCollection 2017.

Microbial Community Structure of Deep-sea Hydrothermal Vents on the Ultraslow Spreading Southwest Indian Ridge

Affiliations

Microbial Community Structure of Deep-sea Hydrothermal Vents on the Ultraslow Spreading Southwest Indian Ridge

Jian Ding et al. Front Microbiol. .

Abstract

Southwest Indian Ridge (SWIR) is a typical oceanic ultraslow spreading ridge with intensive hydrothermal activities. The microbial communities in hydrothermal fields including primary producers to support the entire ecosystem by utilizing geochemical energy generated from rock-seawater interactions. Here we have examined the microbial community structures on four hydrothermal vents from SWIR, representing distinct characteristics in terms of temperature, pH and metal compositions, by using Illumina sequencing of the 16S small subunit ribosomal RNA (rRNA) genes, to correlate bacterial and archaeal populations with the nature of the vents influenced by ultraslow spreading features. Epsilon-, Gamma-, Alpha-, and Deltaproteobacteria and members of the phylum Bacteroidetes and Planctomycetes, as well as Thaumarchaeota, Woesearchaeota, and Euryarchaeota were dominant in all the samples. Both bacterial and archaeal community structures showed distinguished patterns compared to those in the fast-spreading East Pacific Ridge or the slow-spreading Mid-Atlantic Ridge as previously reported. Furthermore, within SWIR, the microbial communities are highly correlated with the local temperatures. For example, the sulfur-oxidizing bacteria were dominant within bacteria from low-temperature vents, but were not represented as the dominating group recovered from high temperature (over 300°C) venting chimneys in SWIR. Meanwhile, Thaumarchaeota, the ammonium oxidizing archaea, only showed high relative abundance of amplicons in the vents with high-temperature in SWIR. These findings provide insights on the microbial community in ultraslow spreading hydrothermal fields, and therefore assist us in the understanding of geochemical cycling therein.

Keywords: 16S ribosomal RNA; SWIR; hydrothermal vent; microbial community; ultraslow-spreading ridge.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Schematic location of the sampling sites and Longqi vent Field (red Pentagram) at SWIR. The map was created using python.
Figure 2
Figure 2
Taxonomic relative abundance of archaeal classes observed of chimney samples for Longqi vent field at SWIR. Bar charts show the Kingdom; Phylum distribution for taxonomically assigned tags that occurred more than 1,000 times.
Figure 3
Figure 3
Taxonomic relative abundance of Thaumarchaeota genera observed in chimney samples. DHVEG-6, Deep Sea Hydrothermal Vent Group 6. Groups in which no tags were sequenced are indicated with a red asterisk. Groups which were detected below1% are indicated with a blue oplus, between 1 and 2% are indicated with a diamond.
Figure 4
Figure 4
Taxonomic breakdown of bacterial 16S rRNA V4-region tags from each chimney sample. Pie Charts show Phylum; Class; Order distribution (The average relative abundance among samples is over 1%) for taxomomically assigned tags that occurred more than 1,000 times; the remaining tag sequences are grouped into “Other.”
Figure 5
Figure 5
Relative abundance of Gammaproteobacteria taxa observed in each chimney sample for Longqi field at SWIR. “others” represents the less abundant genera of Acinetobacter, Sedimenticola, Marinicella, Colwellia, Arenicellaceae, Marine methylotrophic Group 2, Coxiella, Granulosicoccus, and unclassified Gammaproteobacteria. Groups which were detected below1% are indicated with a blue oplus, between 1 and 2% are indicated with a blue diamond.
Figure 6
Figure 6
Relative abundance of Epsilonproteobacteria genera observed in each chimney samplefor Longqi field at SWIR. Groups which were detected below1% are indicated with a blue oplus, between 1 and 2% are indicated with a diamond.
Figure 7
Figure 7
Clustering analysis tree of the archaeal community structure of chimneys from SWIR, EPR and MAR. LS7 = Lucky Strike. Lucky Strike vent field located at MAR (Flores et al., 2011); CH7 = chimney sample from EPR, this study.
Figure 8
Figure 8
Clustering analysis tree of the bacterial community structure of chimneys from SWIR, EPR and MAR. LS7 = Lucky Strike. Lucky Strike vent field located at MAR (Flores et al., 2011); CH7 = Chimney sample from EPR, this study.

References

    1. Akerman N. H., Butterfield D. A., Huber J. A. (2013). Phylogenetic diversity and functional gene patterns of sulfur-oxidizing subseafloor Epsilonproteobacteria in diffuse hydrothermal vent fluids. Front. Microbiol. 4:185. 10.3389/fmicb.2013.00185 - DOI - PMC - PubMed
    1. Anderson R. E., Sogin M. L., Baross J. A. (2015). Biogeography and ecology of the rare and abundant microbial lineages in deep-sea hydrothermal vents. FEMS Microbiol. Ecol. 91, 1–11. 10.1093/femsec/fiu016 - DOI - PubMed
    1. Baker E. T., German C. R. (2004). On the global distribution of hydrothermal vent fields, in Mid-Ocean Ridges: Hydrothermal Interactions between the Lithosphere and Oceans, eds German C. R., Lin J., Parson L. M. (Washington DC: American Geophysical Union; ), 245–266.
    1. Bourbonnais A., Juniper S., Butterfield D., Devol A., Kuypers M., Lavik G., et al. (2012). Activity and abundance of denitrifying bacteria in the subsurface biosphere of diffuse hydrothermal vents of the Juan de Fuca Ridge. Biogeosciences 9, 4661–4678. 10.5194/bg-9-4661-2012 - DOI
    1. Campbell B. J., Jeanthon C., Kostka J. E., Luther G. W., Cary S. C. (2001). Growth and phylogenetic properties of novel bacteria belonging to the Epsilon subdivision of the Proteobacteria enriched from Alvinella pompejana and deep-Sea hydrothermal vents. Appl. Environ. Microbiol. 67, 4566–4572. 10.1128/AEM.67.10.4566-4572.2001 - DOI - PMC - PubMed

LinkOut - more resources