Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2017 Oct:803-805:82-88.
doi: 10.1016/j.mrfmmm.2017.06.004. Epub 2017 Jun 21.

Regulation of DNA damage tolerance in mammalian cells by post-translational modifications of PCNA

Affiliations
Review

Regulation of DNA damage tolerance in mammalian cells by post-translational modifications of PCNA

Rie Kanao et al. Mutat Res. 2017 Oct.

Abstract

DNA damage tolerance pathways, which include translesion DNA synthesis (TLS) and template switching, are crucial for prevention of DNA replication arrest and maintenance of genomic stability. However, these pathways utilize error-prone DNA polymerases or template exchange between sister DNA strands, and consequently have the potential to induce mutations or chromosomal rearrangements. Post-translational modifications of proliferating cell nuclear antigen (PCNA) play important roles in controlling these pathways. For example, TLS is mediated by mono-ubiquitination of PCNA at lysine 164, for which RAD6-RAD18 is the primary E2-E3 complex. Elaborate protein-protein interactions between mono-ubiquitinated PCNA and Y-family DNA polymerases constitute the core of the TLS regulatory system, and enhancers of PCNA mono-ubiquitination and de-ubiquitinating enzymes finely regulate TLS and suppress TLS-mediated mutagenesis. The template switching pathway is promoted by K63-linked poly-ubiquitination of PCNA at lysine 164. Poly-ubiquitination is achieved by a coupled reaction mediated by two sets of E2-E3 complexes, RAD6-RAD18 and MMS2-UBC13-HTLF/SHPRH. In addition to these mono- and poly-ubiquitinations, simultaneous mono-ubiquitinations on multiple units of the PCNA homotrimeric ring promote an unidentified damage tolerance mechanism that remains to be fully characterized. Furthermore, SUMOylation of PCNA in mammalian cells can negatively regulate recombination. Other modifications, including ISGylation, acetylation, methylation, or phosphorylation, may also play roles in DNA damage tolerance and control of genomic stability.

Keywords: DNA damage tolerance; PCNA; Post-translational modification; Translesion synthesis; Ubiquitination.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources