Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1985 Dec 23;360(1-2):149-58.
doi: 10.1016/0006-8993(85)91230-2.

The role of putative excitatory amino acid neurotransmitters in the initiation of locomotion in the lamprey spinal cord. II. The effects of amino acid uptake inhibitors

The role of putative excitatory amino acid neurotransmitters in the initiation of locomotion in the lamprey spinal cord. II. The effects of amino acid uptake inhibitors

L Brodin et al. Brain Res. .

Abstract

Fictive locomotion can be evoked in an in vitro preparation of the lamprey spinal cord by an activation of N-methyl-D-aspartate (NMDA) or kainate receptors. To obtain further knowledge of the putative transmitters underlying this activation the effects of L-glutamate and L-aspartate were examined. These endogenous amino acids exerted a distinctly different effect as compared to the synthetic amino acids (N-methyl-D,L-aspartate and kainate) previously tested. In a wide dose range L-glutamate and L-aspartate elicited fictive locomotion only when the bathing solution was rapidly circulated over the spinal cord surface. In the absence of fluid circulation the activity rapidly ceased. To test if this effect was due to an uptake of amino acids, two amino acid uptake inhibitors were administered. After exposure to p-chloromercuriphenylsulphonate (pCMS) or dihydrokainate (DHK), L-glutamate and L-aspartate elicited continuous fictive locomotion independently of whether the bathing fluid was circulated or not. This treatment also markedly lowered the threshold doses of L-glutamate and L-aspartate, while the effects of NMA and kainate were barely affected. Fictive locomotion induced by sensory stimulation of the tailfin was also prolonged by dihydrokainate. These findings suggest that a highly effective amino acid uptake system is present in the lamprey spinal cord and furthermore that it takes part in the inactivation of synaptically released acidic amino acid neurotransmitters, which are of importance for the initiation of locomotion.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources