Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Sep;43(9):1522-1527.
doi: 10.1016/j.joen.2017.03.041. Epub 2017 Jun 30.

Accuracy of Cone-beam Computed Tomography in Measuring Dentin Thickness and Its Potential of Predicting the Remaining Dentin Thickness after Removing Fractured Instruments

Affiliations

Accuracy of Cone-beam Computed Tomography in Measuring Dentin Thickness and Its Potential of Predicting the Remaining Dentin Thickness after Removing Fractured Instruments

Jialei Xu et al. J Endod. 2017 Sep.

Abstract

Introduction: The purpose of this study was to evaluate the accuracy of cone-beam computed tomographic (CBCT) to measure dentin thickness and its potential of predicting the remaining dentin thickness after the removal of fractured instrument fragments.

Methods: Twenty-three human mandibular molars were selected, and 4-mm portions of #25/.06 taper K3 files (SybronEndo, Orange, CA) were fractured in mesial canals. The teeth were then scanned using a micro-computed tomographic (micro-CT) system and a CBCT unit. Dentin thickness was measured and compared between both micro-CT and CBCT images to study the accuracy of CBCT readings. Then, the process of removing the fragments was simulated in CBCT images using the MeVisLab package (MeVis Research, Bremen, Germany); the predicted minimal remaining dentin thickness after removal was measured in different layers using VGStudio MAX software (Volume Graphics, Heidelberg, Germany). Data were compared with the actual minimal remaining dentin thickness acquired from micro-CT images, which were scanned after removing fractured instruments using the microtrepan technique. The results were analyzed statistically using intraclass correlation coefficients (ICCs) and a forecasting regression model analysis.

Results: The ICC for the dentin thickness was 0.988. The forecasting regression model of CBCT imaging estimating dentin thickness was micro-CT imaging = 15.835 + 1.080*CBCT, R2 = 0.963. The ICC for the remaining dentin thickness was 0.975 (P < .001). The forecasting regression model of CBCT imaging forecasting remaining dentin thickness was micro-CT imaging = 147.999 + 0.879*adjusted CBCT, R2 = 0.906.

Conclusions: The study showed that CBCT imaging could measure dentin thickness accurately. Furthermore, using CBCT images, it is reliable and feasible to forecast the remaining dentin thickness after simulated instrument removal.

Keywords: Cone-beam computed tomographic imaging; dentin thickness; instrument fragment removal; micro–computed tomographic imaging; treatment simulation.

PubMed Disclaimer

LinkOut - more resources