AMPA-receptor specific biogenesis complexes control synaptic transmission and intellectual ability
- PMID: 28675162
- PMCID: PMC5500892
- DOI: 10.1038/ncomms15910
AMPA-receptor specific biogenesis complexes control synaptic transmission and intellectual ability
Abstract
AMPA-type glutamate receptors (AMPARs), key elements in excitatory neurotransmission in the brain, are macromolecular complexes whose properties and cellular functions are determined by the co-assembled constituents of their proteome. Here we identify AMPAR complexes that transiently form in the endoplasmic reticulum (ER) and lack the core-subunits typical for AMPARs in the plasma membrane. Central components of these ER AMPARs are the proteome constituents FRRS1l (C9orf4) and CPT1c that specifically and cooperatively bind to the pore-forming GluA1-4 proteins of AMPARs. Bi-allelic mutations in the human FRRS1L gene are shown to cause severe intellectual disability with cognitive impairment, speech delay and epileptic activity. Virus-directed deletion or overexpression of FRRS1l strongly impact synaptic transmission in adult rat brain by decreasing or increasing the number of AMPARs in synapses and extra-synaptic sites. Our results provide insight into the early biogenesis of AMPARs and demonstrate its pronounced impact on synaptic transmission and brain function.
Conflict of interest statement
The authors declare no competing financial interests.
Figures








Similar articles
-
An ER Assembly Line of AMPA-Receptors Controls Excitatory Neurotransmission and Its Plasticity.Neuron. 2019 Nov 20;104(4):680-692.e9. doi: 10.1016/j.neuron.2019.08.033. Epub 2019 Oct 8. Neuron. 2019. PMID: 31604597
-
Building of AMPA-type glutamate receptors in the endoplasmic reticulum and its implication for excitatory neurotransmission.J Physiol. 2021 May;599(10):2639-2653. doi: 10.1113/JP279025. Epub 2020 Aug 21. J Physiol. 2021. PMID: 32749711 Review.
-
Novel Regulation of the Synthesis of α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid (AMPA) Receptor Subunit GluA1 by Carnitine Palmitoyltransferase 1C (CPT1C) in the Hippocampus.J Biol Chem. 2015 Oct 16;290(42):25548-60. doi: 10.1074/jbc.M115.681064. Epub 2015 Sep 3. J Biol Chem. 2015. PMID: 26338711 Free PMC article.
-
Proline-rich transmembrane protein 2 specifically binds to GluA1 but has no effect on AMPA receptor-mediated synaptic transmission.J Clin Lab Anal. 2022 Feb;36(2):e24196. doi: 10.1002/jcla.24196. Epub 2022 Jan 8. J Clin Lab Anal. 2022. PMID: 34997978 Free PMC article.
-
The implication of AMPA receptor in synaptic plasticity impairment and intellectual disability in fragile X syndrome.Physiol Res. 2017 Nov 24;66(5):715-727. doi: 10.33549/physiolres.933473. Epub 2017 Jul 18. Physiol Res. 2017. PMID: 28730825 Review.
Cited by
-
Development of Genomic Resources and Identification of Genetic Diversity and Genetic Structure of the Domestic Bactrian Camel in China by RAD Sequencing.Front Genet. 2020 Jul 30;11:797. doi: 10.3389/fgene.2020.00797. eCollection 2020. Front Genet. 2020. PMID: 32849801 Free PMC article.
-
Stitching the synapse: Cross-linking mass spectrometry into resolving synaptic protein interactions.Sci Adv. 2020 Feb 19;6(8):eaax5783. doi: 10.1126/sciadv.aax5783. eCollection 2020 Feb. Sci Adv. 2020. PMID: 32128395 Free PMC article.
-
Proteomic insights into synaptic signaling in the brain: the past, present and future.Mol Brain. 2021 Feb 17;14(1):37. doi: 10.1186/s13041-021-00750-5. Mol Brain. 2021. PMID: 33596935 Free PMC article. Review.
-
Mechanisms of postsynaptic localization of AMPA-type glutamate receptors and their regulation during long-term potentiation.Sci Signal. 2019 Jan 1;12(562):eaar6889. doi: 10.1126/scisignal.aar6889. Sci Signal. 2019. PMID: 30600260 Free PMC article. Review.
-
Regulation of GABAARs by Transmembrane Accessory Proteins.Trends Neurosci. 2021 Feb;44(2):152-165. doi: 10.1016/j.tins.2020.10.011. Epub 2020 Nov 21. Trends Neurosci. 2021. PMID: 33234346 Free PMC article. Review.
References
-
- Cull-Candy S., Kelly L. & Farrant M. Regulation of Ca2+-permeable AMPA receptors: synaptic plasticity and beyond. Curr. Opin. Neurobiol. 16, 288–297 (2006). - PubMed
-
- Jonas P. & Spruston N. Mechanisms shaping glutamate-mediated excitatory postsynaptic currents in the CNS. Curr. Opin. Neurobiol. 4, 366–372 (1994). - PubMed
-
- Raman I. M. & Trussell L. O. The kinetics of the response to glutamate and kainate in neurons of the avian cochlear nucleus. Neuron 9, 173–186 (1992). - PubMed
-
- Silver R. A., Traynelis S. F. & Cull-Candy S. G. Rapid-time-course miniature and evoked excitatory currents at cerebellar synapses in situ. Nature 355, 163–166 (1992). - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases