Electrical gate control of spin current in van der Waals heterostructures at room temperature
- PMID: 28677673
- PMCID: PMC5504284
- DOI: 10.1038/ncomms16093
Electrical gate control of spin current in van der Waals heterostructures at room temperature
Abstract
Two-dimensional (2D) crystals offer a unique platform due to their remarkable and contrasting spintronic properties, such as weak spin-orbit coupling (SOC) in graphene and strong SOC in molybdenum disulfide (MoS2). Here we combine graphene and MoS2 in a van der Waals heterostructure (vdWh) to demonstrate the electric gate control of the spin current and spin lifetime at room temperature. By performing non-local spin valve and Hanle measurements, we unambiguously prove the gate tunability of the spin current and spin lifetime in graphene/MoS2 vdWhs at 300 K. This unprecedented control over the spin parameters by orders of magnitude stems from the gate tuning of the Schottky barrier at the MoS2/graphene interface and MoS2 channel conductivity leading to spin dephasing in high-SOC material. Our findings demonstrate an all-electrical spintronic device at room temperature with the creation, transport and control of the spin in 2D materials heterostructures, which can be key building blocks in future device architectures.
Conflict of interest statement
The authors declare no competing financial interests.
Figures









Similar articles
-
Gate-tunable spin-galvanic effect in graphene-topological insulator van der Waals heterostructures at room temperature.Nat Commun. 2020 Jul 21;11(1):3657. doi: 10.1038/s41467-020-17481-1. Nat Commun. 2020. PMID: 32694506 Free PMC article.
-
Room-Temperature Spin Hall Effect in Graphene/MoS2 van der Waals Heterostructures.Nano Lett. 2019 Feb 13;19(2):1074-1082. doi: 10.1021/acs.nanolett.8b04368. Epub 2019 Jan 14. Nano Lett. 2019. PMID: 30608710
-
Configuration-dependent anti-ambipolar van der Waals p-n heterostructures based on pentacene single crystal and MoS2.Nanoscale. 2017 Jun 8;9(22):7519-7525. doi: 10.1039/c7nr01822c. Nanoscale. 2017. PMID: 28534906
-
Spin-Orbit Torque in Van der Waals-Layered Materials and Heterostructures.Adv Sci (Weinh). 2021 Sep;8(18):e2100847. doi: 10.1002/advs.202100847. Epub 2021 Jul 29. Adv Sci (Weinh). 2021. PMID: 34323390 Free PMC article. Review.
-
Van der Waals Heterostructures for High-Performance Device Applications: Challenges and Opportunities.Adv Mater. 2020 Jul;32(27):e1903800. doi: 10.1002/adma.201903800. Epub 2019 Oct 14. Adv Mater. 2020. PMID: 31608514 Review.
Cited by
-
Emergent Multifunctional Magnetic Proximity in van der Waals Layered Heterostructures.Adv Sci (Weinh). 2022 Jul;9(21):e2200186. doi: 10.1002/advs.202200186. Epub 2022 May 21. Adv Sci (Weinh). 2022. PMID: 35596612 Free PMC article. Review.
-
Nearly room temperature ferromagnetism in a magnetic metal-rich van der Waals metal.Sci Adv. 2020 Jan 17;6(3):eaay8912. doi: 10.1126/sciadv.aay8912. eCollection 2020 Jan. Sci Adv. 2020. PMID: 32010775 Free PMC article.
-
Epitaxial Growth of Wafer-Scale Molybdenum Disulfide/Graphene Heterostructures by Metal-Organic Vapor-Phase Epitaxy and Their Application in Photodetectors.ACS Appl Mater Interfaces. 2020 Sep 30;12(39):44335-44344. doi: 10.1021/acsami.0c12894. Epub 2020 Sep 17. ACS Appl Mater Interfaces. 2020. PMID: 32877158 Free PMC article.
-
Recent advances in two-dimensional ferromagnetism: strain-, doping-, structural- and electric field-engineering toward spintronic applications.Sci Technol Adv Mater. 2022 Feb 17;23(1):140-160. doi: 10.1080/14686996.2022.2030652. eCollection 2022. Sci Technol Adv Mater. 2022. PMID: 35185390 Free PMC article. Review.
-
A resilient type-III broken gap Ga2O3/SiC van der Waals heterogeneous bilayer with band-to-band tunneling effect and tunable electronic property.Sci Rep. 2024 Jun 3;14(1):12748. doi: 10.1038/s41598-024-63354-8. Sci Rep. 2024. PMID: 38830949 Free PMC article.
References
-
- Žutić I., Fabian J. & Sarma S. Das. spintronics: fundamentals and applications. Rev. Mod. Phys. 76, 323–410 (2004).
-
- Awschalom D. D. & Flatté M. E. Challenges for semiconductor spintronics. Nat. Phys. 3, 153–159 (2007).
-
- Dash S. P., Sharma S., Patel R. S., de Jong M. P. & Jansen R. Electrical creation of spin polarization in silicon at room temperature. Nature 462, 491–494 (2009). - PubMed
-
- Ohno Y. et al.. Electrical spin injection in a ferromagnetic semiconductor heterostructure. Nature 402, 790–792 (1999).
-
- Jansen R., Min B.-C. & Dash S. P. Oscillatory spin-polarized tunnelling from silicon quantum wells controlled by electric field. Nat. Mater. 9, 133–138 (2010). - PubMed
Publication types
LinkOut - more resources
Full Text Sources
Other Literature Sources