Invited Commentary: Causal Inference Across Space and Time-Quixotic Quest, Worthy Goal, or Both?
- PMID: 28679174
- PMCID: PMC5859978
- DOI: 10.1093/aje/kwx089
Invited Commentary: Causal Inference Across Space and Time-Quixotic Quest, Worthy Goal, or Both?
Abstract
The g-formula and agent-based models (ABMs) are 2 approaches used to estimate causal effects. In the current issue of the Journal, Murray et al. (Am J Epidemiol. 2017;186(2):131-142) compare the performance of the g-formula and ABMs to estimate causal effects in 3 target populations. In their thoughtful paper, the authors outline several reasons that a causal effect estimated using an ABM may be biased when parameterized from at least 1 source external to the target population. The authors have addressed an important issue in epidemiology: Often causal effect estimates are needed to inform public health decisions in settings without complete data. Because public health decisions are urgent, epidemiologists are frequently called upon to estimate a causal effect from existing data in a separate population rather than perform new data collection activities. The assumptions needed to transport causal effects to a specific target population must be carefully stated and assessed, just as one would explicitly state and analyze the assumptions required to draw internally valid causal inference in a specific study sample. Considering external validity in important target populations increases the impact of epidemiologic studies.
Keywords: Monte Carlo methods; agent-based models; causal inference; decision analysis; individual-level models; mathematical models; medical decision making; parametric g-formula.
© The Author(s) 2017. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Comment on
-
A Comparison of Agent-Based Models and the Parametric G-Formula for Causal Inference.Am J Epidemiol. 2017 Jul 15;186(2):131-142. doi: 10.1093/aje/kwx091. Am J Epidemiol. 2017. PMID: 28838064 Free PMC article.
References
-
- Aristotle. Topica Forster ES, trans. Cambridge, MA: Harvard University Press; 1989.
-
- Robins J. A new approach to causal inference in mortality studies with a sustained exposure period—application to control of the healthy worker survivor effect. Math Model. 1986;7(9–12):1393–1512.
-
- Beck JR, Pauker SG. The Markov process in medical prognosis. Med Decis Making. 1983;3(4):419–458. - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources