Uncovering missing pieces: duplication and deletion history of arrestins in deuterostomes
- PMID: 28683816
- PMCID: PMC5501109
- DOI: 10.1186/s12862-017-1001-4
Uncovering missing pieces: duplication and deletion history of arrestins in deuterostomes
Abstract
Background: The cytosolic arrestin proteins mediate desensitization of activated G protein-coupled receptors (GPCRs) via competition with G proteins for the active phosphorylated receptors. Arrestins in active, including receptor-bound, conformation are also transducers of signaling. Therefore, this protein family is an attractive therapeutic target. The signaling outcome is believed to be a result of structural and sequence-dependent interactions of arrestins with GPCRs and other protein partners. Here we elucidated the detailed evolution of arrestins in deuterostomes.
Results: Identity and number of arrestin paralogs were determined searching deuterostome genomes and gene expression data. In contrast to standard gene prediction methods, our strategy first detects exons situated on different scaffolds and then solves the problem of assigning them to the correct gene. This increases both the completeness and the accuracy of the annotation in comparison to conventional database search strategies applied by the community. The employed strategy enabled us to map in detail the duplication- and deletion history of arrestin paralogs including tandem duplications, pseudogenizations and the formation of retrogenes. The two rounds of whole genome duplications in the vertebrate stem lineage gave rise to four arrestin paralogs. Surprisingly, visual arrestin ARR3 was lost in the mammalian clades Afrotheria and Xenarthra. Duplications in specific clades, on the other hand, must have given rise to new paralogs that show signatures of diversification in functional elements important for receptor binding and phosphate sensing.
Conclusion: The current study traces the functional evolution of deuterostome arrestins in unprecedented detail. Based on a precise re-annotation of the exon-intron structure at nucleotide resolution, we infer the gain and loss of paralogs and patterns of conservation, co-variation and selection.
Keywords: Arrestin; Evolution; Gene duplication; Receptor specificity; Retrogene; Signaling.
Figures











Similar articles
-
Identification of receptor binding-induced conformational changes in non-visual arrestins.J Biol Chem. 2014 Jul 25;289(30):20991-1002. doi: 10.1074/jbc.M114.560680. Epub 2014 May 27. J Biol Chem. 2014. PMID: 24867953 Free PMC article.
-
Arrestins: A Small Family of Multi-Functional Proteins.Int J Mol Sci. 2024 Jun 6;25(11):6284. doi: 10.3390/ijms25116284. Int J Mol Sci. 2024. PMID: 38892473 Free PMC article. Review.
-
Glucocorticoids regulate arrestin gene expression and redirect the signaling profile of G protein-coupled receptors.Proc Natl Acad Sci U S A. 2012 Oct 23;109(43):17591-6. doi: 10.1073/pnas.1209411109. Epub 2012 Oct 8. Proc Natl Acad Sci U S A. 2012. PMID: 23045642 Free PMC article.
-
The stability of the G protein-coupled receptor-beta-arrestin interaction determines the mechanism and functional consequence of ERK activation.J Biol Chem. 2003 Feb 21;278(8):6258-67. doi: 10.1074/jbc.M212231200. Epub 2002 Dec 6. J Biol Chem. 2003. PMID: 12473660
-
Arrestins as multi-functional signaling adaptors.Handb Exp Pharmacol. 2008;(186):15-37. doi: 10.1007/978-3-540-72843-6_2. Handb Exp Pharmacol. 2008. PMID: 18491047 Review.
Cited by
-
Arrestin-3 binds parkin and enhances parkin-dependent mitophagy.J Neurochem. 2025 Jan;169(1):e16043. doi: 10.1111/jnc.16043. Epub 2024 Jan 9. J Neurochem. 2025. PMID: 38196269
-
Structural Basis of Arrestin Selectivity for Active Phosphorylated G Protein-Coupled Receptors.Int J Mol Sci. 2021 Nov 19;22(22):12481. doi: 10.3390/ijms222212481. Int J Mol Sci. 2021. PMID: 34830362 Free PMC article. Review.
-
Structural Basis of Arrestin-Dependent Signal Transduction.Trends Biochem Sci. 2018 Jun;43(6):412-423. doi: 10.1016/j.tibs.2018.03.005. Epub 2018 Apr 7. Trends Biochem Sci. 2018. PMID: 29636212 Free PMC article. Review.
-
Critical role of the finger loop in arrestin binding to the receptors.PLoS One. 2019 Mar 15;14(3):e0213792. doi: 10.1371/journal.pone.0213792. eCollection 2019. PLoS One. 2019. PMID: 30875392 Free PMC article.
-
An Eight Amino Acid Segment Controls Oligomerization and Preferred Conformation of the two Non-visual Arrestins.J Mol Biol. 2021 Feb 19;433(4):166790. doi: 10.1016/j.jmb.2020.166790. Epub 2020 Dec 31. J Mol Biol. 2021. PMID: 33387531 Free PMC article.
References
-
- Kang Y, Zhou XE, Gao X, He Y, Liu W, Ishchenko A, Barty A, White TA, Yefanov O, Han GW, Xu Q, Waal PWd, Ke J, Tan MHE, Zhang C, Moeller A, West GM, Pascal BD, van Eps N, Caro LN, Vishnivetskiy SA, Lee RJ, Suino-Powell KM, Gu X, Pal K, Ma J, Zhi X, Boutet S, Williams GJ, Messerschmidt M, Gati C, Zatsepin NA, Wang D, James D, Basu S, Roy-Chowdhury S, Conrad CE, Coe J, Liu H, Lisova S, Kupitz C, Grotjohann I, Fromme R, Jiang Y, Tan M, Yang H, Li J, Wang M, Zheng Z, Li D, Howe N, Zhao Y, Standfuss J, Diederichs K, Dong Y, Potter CS, Carragher B, Caffrey M, Jiang H, Chapman HN, Spence JCH, Fromme P, Weierstall U, Ernst OP, Katritch V, Gurevich VV, Griffin PR, Hubbell WL, Stevens RC, Cherezov V, Melcher K, Xu HE. Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser. Nature. 2015;523(7562):561–7. doi: 10.1038/nature14656. - DOI - PMC - PubMed
-
- Luttrell LM. Molecular Biology of Arrestins. Progress in molecular biology and translational science, vol. v. 118. Oxford: Elsevier Science & Technology; 2013. - PubMed
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources