Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Oct;207(Pt A):10-23.
doi: 10.1016/j.chemphyslip.2017.07.001. Epub 2017 Jul 3.

Effect of electrostatic interaction between fluoxetine and lipid membranes on the partitioning of fluoxetine investigated using second derivative spectrophotometry and FTIR

Affiliations

Effect of electrostatic interaction between fluoxetine and lipid membranes on the partitioning of fluoxetine investigated using second derivative spectrophotometry and FTIR

Tien T T Do et al. Chem Phys Lipids. 2017 Oct.

Abstract

The interaction between a drug molecule and lipid bilayers is highly important regarding the pharmaceutical activity of the drug. In this study, the interaction of fluoxetine, a well-known selective serotonin reuptake inhibitor antidepressant and lipid bilayers composed of 1,2-dipalmitoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (DPPG) and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) was studied from the aspect of electrostatics using second derivative spectrophotometry and Fourier transform infrared spectroscopy (FTIR) in order to provide insights into the drug behavior. Changing pH from 7.4 to 9.5 to increases the neutral state of fluoxetine, the partitioning of fluoxetine into the zwitterionic DPPC large unilamellar vesicles (LUVs) was increased whereas it was reduced into the negatively charged DPPG LUVs. Fluoxetine was found to exhibit a disordering effect on the acyl chains of DPPC and DPPG bilayers upon its partitioning. In addition, increasing concentration of NaCl lessened the binding of fluoxetine into DPPG bilayers due to the reduction in electrostatic attraction between positively charged fluoxetine and negatively charged DPPG LUVs. In addition, the FTIR study revealed that increasing the NaCl concentration could trigger the shift to higher frequency of the CH2 stretching as well as the notable blue shift in the PO2- regions of DPPG, indicating that fluoxetine had deeper penetration into DPPG LUVs. The differences in the NaCl concentration showed a negligible effect on the incorporation of fluoxetine into the zwitterionic DPPC LUVs. In summary, the electrostatic interaction plays an important role on the partitioning of a cationic amphiphilic SSIR drug into the lipid bilayers and the drug partitioning induces the lipids' conformational change. These imply a possible influence on the drug pharmacology.

Keywords: DPPC; DPPG; Electrostatic interaction; FTIR; Fluoxetine; Second derivative spectrophotometry.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources