Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Dec;93(S4):S65-S68.
doi: 10.1136/sextrans-2016-053072. Epub 2017 Jul 6.

Rapid accurate point-of-care tests combining diagnostics and antimicrobial resistance prediction for Neisseria gonorrhoeae and Mycoplasma genitalium

Affiliations

Rapid accurate point-of-care tests combining diagnostics and antimicrobial resistance prediction for Neisseria gonorrhoeae and Mycoplasma genitalium

Syed Tariq Sadiq et al. Sex Transm Infect. 2017 Dec.

Abstract

In addition to inadequate access to early diagnosis and treatment with antimicrobial agents for patients and sexual contacts, management and control of STIs is significantly challenged by emergence and spread of antimicrobial resistance (AMR), particularly for STIs such as Neisseria gonorrhoeae and Mycoplasma genitalium This is further compounded by use of nucleic acid amplification techniques for diagnosis, resulting in reduced phenotypic AMR testing for N. gonorrhoeae and absence or suboptimal AMR surveillance for guiding treatment of both STIs in many settings. Rapid accurate point-of-care (POC) tests for diagnosis of all STIs would be valuable but to significantly impact treatment precision and management of N. gonorrhoeae and M. genitalium infections, combinations of rapid POC diagnostic and AMR testing (POC-AMR) will likely be required. This strategy would combat STI burden and AMR emergence and spread by enabling diagnosis and individualised treatment at the first healthcare visit, potentially reducing selection pressure on recommended antimicrobials, reducing transmission of resistant strains and providing means for AMR surveillance. Microfluidic and nanotechnology platforms under development for rapid detection of STIs provide a basis to also develop molecular rapid POC-AMR prediction. A number of prototypic devices are in the pipeline but none as yet approved for routine use. However, particularly for N. gonorrhoeae, more knowledge is required to assess which antimicrobials lend themselves to a genotypic POC-AMR approach, in relation to genotypic-phenotypic associations and potential impact clinically and epidemiologically. Key for successful deployment will include also understanding cost-effectiveness, cost-consequences and acceptability for key stakeholders.

Keywords: ANTIMICROBIAL RESISTANCE; DIAGNOSIS; DNA AMPLIFICATION; M GENITALIUM; NEISSERIA GONORRHOEA.

PubMed Disclaimer

Conflict of interest statement

Competing interests: STS is grant holder for the National Institute for Health Research (NIHR) i4i Programme (grant number II-LB-0214-20005). The views expressed are those of the authors and not necessarily those of the NIHR, the NHS or the UK Department of Health. STS has also received funding from Atlas Genetics to conduct performance evaluations of its io POC system. None for MU and FM.

Similar articles

Cited by

MeSH terms

LinkOut - more resources