A translational synthetic biology platform for rapid access to gram-scale quantities of novel drug-like molecules
- PMID: 28687337
- PMCID: PMC5555447
- DOI: 10.1016/j.ymben.2017.06.012
A translational synthetic biology platform for rapid access to gram-scale quantities of novel drug-like molecules
Abstract
Plants are an excellent source of drug leads. However availability is limited by access to source species, low abundance and recalcitrance to chemical synthesis. Although plant genomics is yielding a wealth of genes for natural product biosynthesis, the translation of this genetic information into small molecules for evaluation as drug leads represents a major bottleneck. For example, the yeast platform for artemisinic acid production is estimated to have taken >150 person years to develop. Here we demonstrate the power of plant transient transfection technology for rapid, scalable biosynthesis and isolation of triterpenes, one of the largest and most structurally diverse families of plant natural products. Using pathway engineering and improved agro-infiltration methodology we are able to generate gram-scale quantities of purified triterpene in just a few weeks. In contrast to heterologous expression in microbes, this system does not depend on re-engineering of the host. We next exploit agro-infection for quick and easy combinatorial biosynthesis without the need for generation of multi-gene constructs, so affording an easy entrée to suites of molecules, some new-to-nature, that are recalcitrant to chemical synthesis. We use this platform to purify a suite of bespoke triterpene analogs and demonstrate differences in anti-proliferative and anti-inflammatory activity in bioassays, providing proof of concept of this system for accessing and evaluating medicinally important bioactives. Together with new genome mining algorithms for plant pathway discovery and advances in plant synthetic biology, this advance provides new routes to synthesize and access previously inaccessible natural products and analogs and has the potential to reinvigorate drug discovery pipelines.
Keywords: Combinatorial biosynthesis; Drug discovery; Synthetic biology; Terpenes; Transient plant expression technology; Triterpenoids.
Copyright © 2017. Published by Elsevier Inc.
Figures




References
-
- Andersen-Ranberg J., Kongstad K.T., Nielsen M.T., Jensen N.B., Pateraki I., Bach S.S., Hamberger B., Zerbe P., Staerk D., Bohlmann J., Moller B.L., Hamberger B. Expanding the landscape of Diterpene structural diversity through stereochemically controlled combinatorial biosynthesis. Angew. Chem. (Int. Ed. Engl.). 2016;55:2142–2146. - PMC - PubMed
-
- Biazzi E., Carelli M., Tava A., Abbruscato P., Losini I., Avato P., Scotti C., Calderini O. CYP72A67 catalyzes a key oxidative step in Medicago truncatula Hemolytic Saponin biosynthesis. Mol. Plant. 2015;8:1493–1506. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
- BBS/E/J/000PR9790/BB_/Biotechnology and Biological Sciences Research Council/United Kingdom
- 614779/ERC_/European Research Council/International
- BBS/E/J/00000614/BB_/Biotechnology and Biological Sciences Research Council/United Kingdom
- BB/J004561/1/BB_/Biotechnology and Biological Sciences Research Council/United Kingdom
- BB/M028860/1/BB_/Biotechnology and Biological Sciences Research Council/United Kingdom
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials