Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2018 Aug:80:133-141.
doi: 10.1016/j.semcdb.2017.07.005. Epub 2017 Jul 5.

Plant glyco-biotechnology

Affiliations
Free article
Review

Plant glyco-biotechnology

Jennifer Schoberer et al. Semin Cell Dev Biol. 2018 Aug.
Free article

Abstract

Glycosylation is an important protein modification in all eukaryotes. Whereas the early asparagine-linked glycosylation (N-glycosylation) and N-glycan processing steps in the endoplasmic reticulum are conserved between mammals and plants, the maturation of complex N-glycans in the Golgi apparatus differs considerably. Due to a restricted number of Golgi-resident N-glycan processing enzymes and the absence of nucleotide sugars such as CMP-N-acetylneuraminic acid, plants produce only a limited repertoire of different N-glycan structures. Moreover, mammalian mucin-type O-glycosylation of serine or threonine residues has not been described in plants and the required machinery is not encoded in their genome which enables de novo build-up of the pathway. As a consequence, plants are very well-suited for the production of homogenous N- and O-glycans and are increasingly used for the production of recombinant glycoproteins with custom-made glycans that may result in the generation of biopharmaceuticals with improved therapeutic potential.

Keywords: Endoplasmic reticulum; Glycan function; Glyco-engineering; Golgi apparatus; N-Glycosylation; O-Glycosylation.

PubMed Disclaimer

Publication types

LinkOut - more resources