Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Mar;10(3):268-274.
doi: 10.1136/neurintsurg-2017-013144. Epub 2017 Jul 8.

Evaluation of a novel liquid embolic agent (precipitating hydrophobic injectable liquid (PHIL)) in an animal endovascular embolization model

Affiliations

Evaluation of a novel liquid embolic agent (precipitating hydrophobic injectable liquid (PHIL)) in an animal endovascular embolization model

Dominik F Vollherbst et al. J Neurointerv Surg. 2018 Mar.

Abstract

Background: The choice of the embolic agent and the embolization technique can have a significant impact on the success of endovascular embolization.

Objective: To evaluate a novel iodinated copolymer-based liquid embolic agent (precipitating hydrophobic injectable liquid (PHIL)) in the porcine rete mirabile (RM), serving as an endovascular embolization model. Onyx, as an established liquid embolic agent, served as comparator.

Materials and methods: Sixteen embolization procedures were performed using PHIL (n=8) or Onyx (n=8) as liquid embolic agent. Waiting time between injections was set to 30 or 60 s (n=4 per study group). Survival time after intervention was 2 hours or 7 days. Embolization characteristics (eg, procedure times, number of injections and volume of embolic agent) and embolization extent (percentage of embolized RM in post-interventional x-ray) were assessed. Post-interventional CT and histopathological analyses were performed.

Results: Embolization characteristics and embolization extent were not significantly different for PHIL and Onyx, including subgroups (eg, embolization extent 44% vs 69% (medians); p=0.101). For PHIL, extension of the waiting time from 30 to 60 s led to a significantly higher embolization extent (24% vs 72% (medians); p=0.035). Moderate disintegration and mild inflammation of the embolized blood vessels were present for both embolic agents.

Conclusion: PHIL is feasible for transarterial embolization in an acute and subacute endovascular embolization model. In this preliminary experimental in vivo study, embolization characteristics, embolization extent, and biocompatibility seem to be similar to those of Onyx.

Keywords: arteriovenous malformation; intervention; liquid embolic material.

PubMed Disclaimer

Conflict of interest statement

Competing interests: JP reports personal fees from Siemens Healthcare GmbH and personal fees from Stryker GmbH & Co KG, outside the submitted work. HK reports grants, personal fees and non-financial support from Siemens, personal fees from Boehringer Ingelheim, personal fees and non-financial support from Bayer, personal fees from GSK, personal fees from Novartis, personal fees from Astra Zeneca, personal fees from Philips, personal fees from Bracco, outside the submitted work. MB: reports board membership: DSMB Vascular Dynamics; consultancy: Roche, Guerbet, Codman; grants/grants pending: DFG, Hopp Foundation, Novartis, Siemens, Guerbet, Stryker, Covidien; payment for lectures (including service on speakers' bureaus): Novartis, Roche, Guerbet, Teva, Bayer, Codman. HK: reports grants, personal fees and non-financial support from Siemens, personal fees from Boehringer Ingelheim, personal fees and non-financial support from Bayer, personal fees from GSK, personal fees from Novartis, personal fees from Astra Zeneca, personal fees from Philips, personal fees from Bracco, outside the submitted work. MM: has received consulting honoraria, speaker honoraria, and travel support outside this work from Codman, Covidien/Medtronic, MicroVention, Phenox, and Stryker. All other authors have no competing interests to disclose.

MeSH terms

LinkOut - more resources