Density Functional Calculations for Prediction of 57Fe Mössbauer Isomer Shifts and Quadrupole Splittings in β-Diketiminate Complexes
- PMID: 28691111
- PMCID: PMC5494642
- DOI: 10.1021/acsomega.7b00595
Density Functional Calculations for Prediction of 57Fe Mössbauer Isomer Shifts and Quadrupole Splittings in β-Diketiminate Complexes
Erratum in
-
Correction to "Density Functional Calculations for Prediction of 57Fe Mossbauer Isomer Shifts and Quadrupole Splittings in β-Diketiminate Complexes".ACS Omega. 2017 Sep 20;2(9):5973. doi: 10.1021/acsomega.7b01252. eCollection 2017 Sep 30. ACS Omega. 2017. PMID: 31457850 Free PMC article.
Abstract
The relative ease of Mössbauer spectroscopy and of density functional theory (DFT) calculations encourages the use of Mössbauer parameters as a validation method for calculations, and the use of calculations as a double check on crystallographic structures. A number of studies have proposed correlations between the computationally determined electron density at the iron nucleus and the observed isomer shift, but deviations from these correlations in low-valent iron β-diketiminate complexes encouraged us to determine a new correlation for these compounds. The use of B3LYP/def2-TZVP in the ORCA platform provides an excellent balance of accuracy and speed. We provide here not only this new correlation and a clear guide to its use but also a systematic analysis of the limitations of this approach. We also highlight the impact of crystallographic inaccuracies, DFT model truncation, and spin states, with intent to assist experimentalists to use Mössbauer spectroscopy and calculations together.
Conflict of interest statement
The authors declare no competing financial interest.
Figures
References
-
- Mössbauer R. L. Kernresonanzfluoreszenz von Gammastrahlung in 191Ir. Z. Phys. 1958, 151, 124–143. 10.1007/BF01344210. - DOI
-
- Martinho M.; Münck E.. 57Fe Mössbauer Spectroscopy in Chemistry and Biology. In Physical Inorganic Chemistry; John Wiley & Sons, Inc., 2010; pp 39–67.
- Münck E.; Stubna A.. Mössbauer Spectroscopy: Bioinorganic. In Comprehensive Coordination Chemistry II; McCleverty J. A., Meyer T. J., Eds.; Pergamon: Oxford, 2003; pp 279–286.
- Trautwein A. X.; Bill E.. Mössbauer Studies in Bioinorganic Chemistry. In Transition Metal Chemistry, Proceeding Workshop; Müller A., Diemann E., Eds.; Verlag Chem.: Weinheim, 1981; pp 239–263.
-
- Gütlich P.; Bill E.; Trautwein A. X.. Mössbauer Spectroscopy and Transition Metal Chemistry: Fundamentals and Applications; Springer-Verlag: Berlin, 2011; p 568.
- Raghavan P. Table of nuclear moments. At. Data Nucl. Data Tables 1989, 42, 189–291. 10.1016/0092-640X(89)90008-9. - DOI
-
- Burda K.; Stanek J. Application of Mössbauer Spectroscopy in Study of Selected Biochemical Processes. Acta Phys. Pol., A 2003, 103, 499–509. 10.12693/APhysPolA.103.499. - DOI
- Ruby S. L.; Shenoy G. K. In Mössbauer Isomer Shifts for the 5s-5p Elements Beyond Tin: (Antimony, Tellurium, Iodine, Xenon); Elsevier, 1978; pp 617–59.
- Herber R. H. The Mössbauer Effect and Its Application in Chemistry. Adv. Chem. 1967, 68, 1–20. 10.1021/ba-1967-0068.ch001. - DOI
-
- Unno M.; Ikeda-Saito M.. Characterization of Metal Proteins. In Nanohybridization of Organic-Inorganic Materials; Muramatsu A.; Miyashita T., Eds.; Springer: Berlin, 2009; pp 193–217.
- Krebs C.; Bollinger J. M. Freeze-quench 57Fe-Mössbauer spectroscopy: trapping reactive intermediates. Photosynth. Res. 2009, 102, 295. 10.1007/s11120-009-9406-6. - DOI - PubMed
- Huynh B. H. Mössbauer spectroscopy. Methods Mol. Biol. 2011, 766, 221–235. 10.1007/978-1-61779-194-9_15. - DOI - PubMed
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
