High-efficiency non-mosaic CRISPR-mediated knock-in and indel mutation in F0 Xenopus
- PMID: 28694259
- PMCID: PMC5560047
- DOI: 10.1242/dev.152967
High-efficiency non-mosaic CRISPR-mediated knock-in and indel mutation in F0 Xenopus
Abstract
The revolution in CRISPR-mediated genome editing has enabled the mutation and insertion of virtually any DNA sequence, particularly in cell culture where selection can be used to recover relatively rare homologous recombination events. The efficient use of this technology in animal models still presents a number of challenges, including the time to establish mutant lines, mosaic gene editing in founder animals, and low homologous recombination rates. Here we report a method for CRISPR-mediated genome editing in Xenopus oocytes with homology-directed repair (HDR) that provides efficient non-mosaic targeted insertion of small DNA fragments (40-50 nucleotides) in 4.4-25.7% of F0 tadpoles, with germline transmission. For both CRISPR/Cas9-mediated HDR gene editing and indel mutation, the gene-edited F0 embryos are uniformly heterozygous, consistent with a mutation in only the maternal genome. In addition to efficient tagging of proteins in vivo, this HDR methodology will allow researchers to create patient-specific mutations for human disease modeling in Xenopus.
Keywords: CRISPR/Cas9; F0; Homology-directed repair (HDR); Non-mosaic; Xenopus laevis; Xenopus tropicalis.
© 2017. Published by The Company of Biologists Ltd.
Conflict of interest statement
Competing interestsThe authors declare no competing or financial interests.
Figures



Similar articles
-
How to Generate Non-Mosaic CRISPR/Cas9 Mediated Knock-In and Mutations in F0 Xenopus Through the Host-Transfer Technique.Methods Mol Biol. 2018;1865:105-117. doi: 10.1007/978-1-4939-8784-9_8. Methods Mol Biol. 2018. PMID: 30151762
-
Generating Nonmosaic Mutants in Xenopus Using CRISPR-Cas in Oocytes.Cold Spring Harb Protoc. 2022 Jun 24;2022(6):Pdb.prot106989. doi: 10.1101/pdb.prot106989. Cold Spring Harb Protoc. 2022. PMID: 34244351
-
Simple embryo injection of long single-stranded donor templates with the CRISPR/Cas9 system leads to homology-directed repair in Xenopus tropicalis and Xenopus laevis.Genesis. 2020 Jun;58(6):e23366. doi: 10.1002/dvg.23366. Epub 2020 Apr 11. Genesis. 2020. PMID: 32277804
-
Mosaicism in CRISPR/Cas9-mediated genome editing.Dev Biol. 2019 Jan 15;445(2):156-162. doi: 10.1016/j.ydbio.2018.10.008. Epub 2018 Oct 22. Dev Biol. 2019. PMID: 30359560 Review.
-
CRISPR/Cas9-mediated correction of human genetic disease.Sci China Life Sci. 2017 May;60(5):447-457. doi: 10.1007/s11427-017-9032-4. Epub 2017 May 3. Sci China Life Sci. 2017. PMID: 28534256 Review.
Cited by
-
Expanding the CRISPR/Cas genome-editing scope in Xenopus tropicalis.Cell Biosci. 2022 Jul 8;12(1):104. doi: 10.1186/s13578-022-00841-3. Cell Biosci. 2022. PMID: 35804405 Free PMC article.
-
Tissue-Specific Gene Inactivation in Xenopus laevis: Knockout of lhx1 in the Kidney with CRISPR/Cas9.Genetics. 2018 Feb;208(2):673-686. doi: 10.1534/genetics.117.300468. Epub 2017 Nov 29. Genetics. 2018. PMID: 29187504 Free PMC article.
-
CRISPR/Cas9-mediated homology-directed repair by ssODNs in zebrafish induces complex mutational patterns resulting from genomic integration of repair-template fragments.Dis Model Mech. 2018 Oct 18;11(10):dmm035352. doi: 10.1242/dmm.035352. Dis Model Mech. 2018. PMID: 30355591 Free PMC article.
-
Modulation of Intracellular ROS and Senescence-Associated Phenotypes of Xenopus Oocytes and Eggs by Selective Antioxidants.Antioxidants (Basel). 2021 Jul 1;10(7):1068. doi: 10.3390/antiox10071068. Antioxidants (Basel). 2021. PMID: 34356301 Free PMC article.
-
Early Xenopus gene regulatory programs, chromatin states, and the role of maternal transcription factors.Curr Top Dev Biol. 2020;139:35-60. doi: 10.1016/bs.ctdb.2020.02.009. Epub 2020 Apr 6. Curr Top Dev Biol. 2020. PMID: 32450966 Free PMC article. Review.
References
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources