Compartment-Specific Poly-ADP-Ribose Formation as a Biosensor for Subcellular NAD Pools
- PMID: 28695502
- DOI: 10.1007/978-1-4939-6993-7_4
Compartment-Specific Poly-ADP-Ribose Formation as a Biosensor for Subcellular NAD Pools
Abstract
Nicotinamide adenine dinucleotide (NAD) is vital to many cellular processes and is distributed between distinct subcellular pools in the compartmentalized eukaryotic cell. The detection and relative quantification of these individual pools is difficult because of the methods usually applied, which require cell disruption and fractionation.Here, we describe an immunochemical method to visualize and relatively quantify subcellular NAD+ pools, which relies on the NAD+-consuming activity of poly-ADP-ribose polymerase 1 (PARP1). We demonstrate that this system can be readily applied to detect changes in the mitochondrial, Golgi, endoplasmic reticulum, and peroxisomal NAD+ pools.
Keywords: Biosensor; Compartmentalization; Immunoblot analysis; Immunocytochemistry; Mitochondria; NAD; PARP1; Poly-ADP-ribose.
Similar articles
-
Visualization of subcellular NAD pools and intra-organellar protein localization by poly-ADP-ribose formation.Cell Mol Life Sci. 2010 Feb;67(3):433-43. doi: 10.1007/s00018-009-0190-4. Epub 2009 Nov 10. Cell Mol Life Sci. 2010. PMID: 19902144 Free PMC article.
-
Detection of PARP-1 activity based on hyperbranched-poly (ADP-ribose) polymers responsive current in artificial nanochannels.Biosens Bioelectron. 2018 Aug 15;113:136-141. doi: 10.1016/j.bios.2018.05.005. Epub 2018 May 4. Biosens Bioelectron. 2018. PMID: 29754052
-
Modulation of nicotinamide adenine dinucleotide and poly(adenosine diphosphoribose) metabolism by the synthetic "C" nucleoside analogs, tiazofurin and selenazofurin. A new strategy for cancer chemotherapy.J Clin Invest. 1985 Feb;75(2):702-9. doi: 10.1172/JCI111750. J Clin Invest. 1985. PMID: 3919063 Free PMC article.
-
Inputs and outputs of poly(ADP-ribosyl)ation: Relevance to oxidative stress.Redox Biol. 2014;2:978-82. doi: 10.1016/j.redox.2014.08.003. Epub 2014 Aug 21. Redox Biol. 2014. PMID: 25460733 Free PMC article. Review.
-
NAD⁺-dependent enzymes at the endoplasmic reticulum.Curr Top Med Chem. 2013;13(23):3001-10. doi: 10.2174/15680266113136660214. Curr Top Med Chem. 2013. PMID: 24171768 Review.
Cited by
-
Subcellular compartmentalization of NAD+ and its role in cancer: A sereNADe of metabolic melodies.Pharmacol Ther. 2019 Aug;200:27-41. doi: 10.1016/j.pharmthera.2019.04.002. Epub 2019 Apr 8. Pharmacol Ther. 2019. PMID: 30974124 Free PMC article. Review.
-
NAD+ metabolism, stemness, the immune response, and cancer.Signal Transduct Target Ther. 2021 Jan 1;6(1):2. doi: 10.1038/s41392-020-00354-w. Signal Transduct Target Ther. 2021. PMID: 33384409 Free PMC article. Review.
-
Brain energy metabolism: A roadmap for future research.J Neurochem. 2024 May;168(5):910-954. doi: 10.1111/jnc.16032. Epub 2024 Jan 6. J Neurochem. 2024. PMID: 38183680 Free PMC article. Review.
-
Regulation of Glucose Metabolism by NAD+ and ADP-Ribosylation.Cells. 2019 Aug 13;8(8):890. doi: 10.3390/cells8080890. Cells. 2019. PMID: 31412683 Free PMC article. Review.
-
Decreased mitochondrial NAD+ in WRN deficient cells links to dysfunctional proliferation.Aging (Albany NY). 2025 Apr 2;17(4):937-959. doi: 10.18632/aging.206236. Epub 2025 Apr 2. Aging (Albany NY). 2025. PMID: 40179319 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous