Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2017 Jul 11;9(7):87.
doi: 10.3390/cancers9070087.

Role and Therapeutic Targeting of the HGF/MET Pathway in Glioblastoma

Affiliations
Review

Role and Therapeutic Targeting of the HGF/MET Pathway in Glioblastoma

Nichola Cruickshanks et al. Cancers (Basel). .

Abstract

Glioblastoma (GBM) is a lethal brain tumor with dismal prognosis. Current therapeutic options, consisting of surgery, chemotherapy and radiation, have only served to marginally increase patient survival. Receptor tyrosine kinases (RTKs) are dysregulated in approximately 90% of GBM; attributed to this, research has focused on inhibiting RTKs as a novel and effective therapy for GBM. Overexpression of RTK mesenchymal epithelial transition (MET), and its ligand, hepatocyte growth factor (HGF), in GBM highlights a promising new therapeutic target. This review will discuss the role of MET in cell cycle regulation, cell proliferation, evasion of apoptosis, cell migration and invasion, angiogenesis and therapeutic resistance in GBM. It will also discuss the modes of deregulation of HGF/MET and their regulation by microRNAs. As the HGF/MET pathway is a vital regulator of multiple pro-survival pathways, efforts and strategies for its exploitation for GBM therapy are also described.

Keywords: Glioblastoma; HGF; MET.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Mechanism of mesenchymal epithelial transition (MET) activation and current therapeutic strategies for hepatocyte growth factor (HGF)/MET inhibition. The MET receptor is activated through ligand (HGF) binding, which induces receptor dimerization and cross phosphorylation. Activation can be inhibited in several ways: (1) Decoy MET protein sequesters HGF from MET, (2) Anti-HGF and MET monoclonal antibodies competitively bind to the ligand and receptor, respectively. (3) HGF antagonists competitively bind to MET. (4) Small molecule kinase inhibitors prevent receptor activation by inhibiting kinase domain activity. (5) Gene therapy modulates HGF and MET mRNA production.
Figure 2
Figure 2
MET regulated signaling pathways implicated in the hallmarks of cancer. MET activation initiates the following downstream pathways: (1) phosphoinositide 3-kinase (PI3K) signaling conferring enhanced survival, (2) RAS/mitogen-activated protein kinase (MAPK) Pathway signaling resulting in enhanced proliferation, cell motility and invasion, (3) Jun amino-terminal kinases (JNK)/signal transducer and activator of transcription (STAT) signaling, which contributes to cell transformation and (4) focal adhesion kinase (FAK) signaling leading to increased cell motility and invasion.
Figure 3
Figure 3
Modes of deregulation of HGF/MET in cancer: (1) Autocrine and paracrine overexpression of HGF, (2) Amplification of MET gene leading to MET protein overexpression, (3) An activating mutation resulting in a constitutively active protein product, (4) HGF overexpression by tumor cells activating MET in the tumor microenvironment.

References

    1. Thakkar J.P., Dolecek T.A., Horbinski C., Ostrom Q.T., Lightner D.D., Barnholtz-Sloan J.S., Villano J.L. Epidemiologic and molecular prognostic review of glioblastoma. Cancer Epidemiol. Biomarkers Prev. 2014;23:1985–1996. doi: 10.1158/1055-9965.EPI-14-0275. - DOI - PMC - PubMed
    1. Lee C.Y. Strategies of temozolomide in future glioblastoma treatment. Onco. Targets Ther. 2017;10:265–270. doi: 10.2147/OTT.S120662. - DOI - PMC - PubMed
    1. Brennan C.W., Verhaak R.G., McKenna A., Campos B., Noushmehr H., Salama S.R., Zheng S., Chakravarty D., Sanborn J.Z., Berman S.H., et al. The somatic genomic landscape of glioblastoma. Cell. 2013;155:462–477. doi: 10.1016/j.cell.2013.09.034. - DOI - PMC - PubMed
    1. Verhaak R.G., Hoadley K.A., Purdom E., Wang V., Qi Y., Wilkerson M.D., Miller C.R., Ding L., Golub T., Mesirov J.P., et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, AND NF1. Cancer Cell. 2010;17:98–110. doi: 10.1016/j.ccr.2009.12.020. - DOI - PMC - PubMed
    1. Louis D.N., Perry A., Reifenberger G., von Deimling A., Figarella-Branger D., Cavenee W.K., Ohgaki H., Wiestler O.D., Kleihues P., Ellison D.W. The 2016 world health organization classification of tumors of the central nervous system: A summary. Acta Neuropathol. 2016;131:803–820. doi: 10.1007/s00401-016-1545-1. - DOI - PubMed

LinkOut - more resources