Convolutional Embedding of Attributed Molecular Graphs for Physical Property Prediction
- PMID: 28696688
- DOI: 10.1021/acs.jcim.6b00601
Convolutional Embedding of Attributed Molecular Graphs for Physical Property Prediction
Abstract
The task of learning an expressive molecular representation is central to developing quantitative structure-activity and property relationships. Traditional approaches rely on group additivity rules, empirical measurements or parameters, or generation of thousands of descriptors. In this paper, we employ a convolutional neural network for this embedding task by treating molecules as undirected graphs with attributed nodes and edges. Simple atom and bond attributes are used to construct atom-specific feature vectors that take into account the local chemical environment using different neighborhood radii. By working directly with the full molecular graph, there is a greater opportunity for models to identify important features relevant to a prediction task. Unlike other graph-based approaches, our atom featurization preserves molecule-level spatial information that significantly enhances model performance. Our models learn to identify important features of atom clusters for the prediction of aqueous solubility, octanol solubility, melting point, and toxicity. Extensions and limitations of this strategy are discussed.
Similar articles
-
Molecule Property Prediction Based on Spatial Graph Embedding.J Chem Inf Model. 2019 Sep 23;59(9):3817-3828. doi: 10.1021/acs.jcim.9b00410. Epub 2019 Aug 30. J Chem Inf Model. 2019. PMID: 31438677
-
Why are some properties more difficult to predict than others? A study of QSPR models of solubility, melting point, and Log P.J Chem Inf Model. 2008 Jan;48(1):220-32. doi: 10.1021/ci700307p. Epub 2008 Jan 11. J Chem Inf Model. 2008. PMID: 18186622
-
A neural network based prediction of octanol-water partition coefficients using atomic5 fragmental descriptors.Bioorg Med Chem Lett. 2004 Feb 23;14(4):851-3. doi: 10.1016/j.bmcl.2003.12.024. Bioorg Med Chem Lett. 2004. PMID: 15012980
-
Theoretical property predictions.Curr Top Med Chem. 2003;3(10):1171-92. doi: 10.2174/1568026033452078. Curr Top Med Chem. 2003. PMID: 12769715 Review.
-
Reduced graphs and their applications in chemoinformatics.Methods Mol Biol. 2011;672:197-212. doi: 10.1007/978-1-60761-839-3_8. Methods Mol Biol. 2011. PMID: 20838970 Review.
Cited by
-
Hybrid fragment-SMILES tokenization for ADMET prediction in drug discovery.BMC Bioinformatics. 2024 Aug 1;25(1):255. doi: 10.1186/s12859-024-05861-z. BMC Bioinformatics. 2024. PMID: 39090573 Free PMC article.
-
Automatic Prediction of Peak Optical Absorption Wavelengths in Molecules Using Convolutional Neural Networks.J Chem Inf Model. 2024 Mar 11;64(5):1486-1501. doi: 10.1021/acs.jcim.3c01792. Epub 2024 Feb 29. J Chem Inf Model. 2024. PMID: 38422386 Free PMC article.
-
Harnessing big 'omics' data and AI for drug discovery in hepatocellular carcinoma.Nat Rev Gastroenterol Hepatol. 2020 Apr;17(4):238-251. doi: 10.1038/s41575-019-0240-9. Epub 2020 Jan 3. Nat Rev Gastroenterol Hepatol. 2020. PMID: 31900465 Free PMC article. Review.
-
Practical Model Selection for Prospective Virtual Screening.J Chem Inf Model. 2019 Jan 28;59(1):282-293. doi: 10.1021/acs.jcim.8b00363. Epub 2018 Dec 18. J Chem Inf Model. 2019. PMID: 30500183 Free PMC article.
-
DeepAffinity: interpretable deep learning of compound-protein affinity through unified recurrent and convolutional neural networks.Bioinformatics. 2019 Sep 15;35(18):3329-3338. doi: 10.1093/bioinformatics/btz111. Bioinformatics. 2019. PMID: 30768156 Free PMC article.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources