Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Jul 12;117(13):8754-8786.
doi: 10.1021/acs.chemrev.6b00622. Epub 2016 Dec 2.

Palladium-Catalyzed Transformations of Alkyl C-H Bonds

Affiliations

Palladium-Catalyzed Transformations of Alkyl C-H Bonds

Jian He et al. Chem Rev. .

Abstract

This Review summarizes the advancements in Pd-catalyzed C(sp3)-H activation via various redox manifolds, including Pd(0)/Pd(II), Pd(II)/Pd(IV), and Pd(II)/Pd(0). While few examples have been reported in the activation of alkane C-H bonds, many C(sp3)-H activation/C-C and C-heteroatom bond forming reactions have been developed by the use of directing group strategies to control regioselectivity and build structural patterns for synthetic chemistry. A number of mono- and bidentate ligands have also proven to be effective for accelerating C(sp3)-H activation directed by weakly coordinating auxiliaries, which provides great opportunities to control reactivity and selectivity (including enantioselectivity) in Pd-catalyzed C-H functionalization reactions.

PubMed Disclaimer

Conflict of interest statement

Notes

The authors declare no competing financial interest.

Figures

Scheme 1
Scheme 1
Pd(II)-Catalyzed Carbonylation of Alkanes
Scheme 2
Scheme 2
Pd(II)-Catalyzed Trifluoroacetoxylation of Alkanes
Scheme 3
Scheme 3
Dyker’s Synthesis of 1,2-Dihydrocyclobutabenzene
Scheme 4
Scheme 4
Pd(0)/PAr3-Catalyzed Intramolecular C(sp3)–H Activation
Scheme 5
Scheme 5
Pd(0)-Catalyzed Intramolecular C(sp3)–H Arylation
Scheme 6
Scheme 6
Pd(0)-Catalyzed Intramolecular C(sp3)–H Alkenylation
Scheme 7
Scheme 7
Pd(0)-Catalyzed Intramolecular Cyclization of Benzylic C(sp3)–H Bonds
Scheme 8
Scheme 8
Pd(0)-Catalyzed Intermolecular C(sp3)–H Functionalizations
Scheme 9
Scheme 9
Pd(0)-Catalyzed Enantioselective Intramolecular C(sp3)–H Arylation
Scheme 10
Scheme 10
Pd(0)-Catalyzed Enantioselective Intramolecular C(sp3)–H Activation of Cyclopropanes
Scheme 11
Scheme 11
Cyclopalladation Using Nitrogenous Directing Groups
Scheme 12
Scheme 12
Pd(II)-Insertion into Methylene C(sp3)–H Bond
Scheme 13
Scheme 13
Reactions of Oxime-Derived Palladacycles
Scheme 14
Scheme 14
Reactions of Oxazoline-Derived Palladacycles
Scheme 15
Scheme 15
Synthesis of Teleocidin B-4 Core
Scheme 16
Scheme 16
Pd(II)-Catalyzed C(sp2)–H Functionalizations
Scheme 17
Scheme 17
Pd(II)-Catalyzed C(sp3)–H Acetoxylation
Scheme 18
Scheme 18
Pd(II)-Catalyzed C(sp3)–H Amidation
Scheme 19
Scheme 19
Diastereoselective C(sp3)–H Functionalizations
Scheme 20
Scheme 20
Asymmetric Induction Model and Characterized Intermediate Structure
Scheme 21
Scheme 21
Conversion of gem-Dimethyl Groups into Cyclopropanes
Scheme 22
Scheme 22
Pd(II)-Catalyzed C(sp3)–H Arylation with Aryl Halides
Scheme 23
Scheme 23
C(sp3)–H Activation Facilitated by Bidentate Directing Groups
Scheme 24
Scheme 24
Asymmetric C(sp3)–H Arylation Induced by Chiral Phosphoramides
Scheme 25
Scheme 25
Functionalizations of α-Amino Acid Derivatives
Scheme 26
Scheme 26
Pd(II)-Catalyzed C(sp3)–H Alkynylation
Scheme 27
Scheme 27
Pd(II)-Catalyzed C(sp3)–H Alkenylation
Scheme 28
Scheme 28
Pd(II)-Catalyzed C(sp3)–H Alkylation
Scheme 29
Scheme 29
Formations of C(sp3)–Heteroatom Bonds
Scheme 30
Scheme 30
Pd(II)-Catalyzed C(sp3)–H Halogenation
Scheme 31
Scheme 31
Synthesis of Celogentin C
Scheme 32
Scheme 32
Synthesis of Piperaborenine B
Scheme 33
Scheme 33
Enantioselective Synthesis of (+)-Psiguadial B
Scheme 34
Scheme 34
Sulfoximine-Assisted Halogenation of β-C(sp3)–H Bonds of Amides
Scheme 35
Scheme 35
β-Methylene C(sp3)–H Fluorination of α-Amino Acid Derivatives
Scheme 36
Scheme 36
Amino Acid-Directed C(sp3)–H Arylation
Scheme 37
Scheme 37
A Simplified Catalytic Cycle for Pd(0)-Catalyzed Cross-Coupling Reactions
Scheme 38
Scheme 38
Proposed Catalytic Cycle for Pd(II)-Catalyzed C–H Activation/C–C Cross-Coupling Reactions
Scheme 39
Scheme 39
C(sp2)–H Activation/Alkyltin Cross-Coupling Reaction
Scheme 40
Scheme 40
C(sp3)–H Activation/Organoboron Cross-Coupling Reaction
Scheme 41
Scheme 41
Enantioselective Pd(II)-Catalyzed C(sp3)–H Alkylation
Scheme 42
Scheme 42
Thioamide-Directed C(sp3)–H Cross-Coupling of Pyrrolidines
Scheme 43
Scheme 43
Heterocycle-Directed C(sp3)–H Olefination
Scheme 44
Scheme 44
Bidentate Auxiliary-Assisted C(sp3)–H Activation via Pd(II)/Pd(0) Catalysis
Scheme 45
Scheme 45
Countercation-Enabled Carboxylate-Directed C(sp3)–H Activation
Scheme 46
Scheme 46
Pd(II)-Catalyzed C(sp3)–H Activation/Cross-Coupling
Scheme 47
Scheme 47
Reaction with Substrates Containing α-Hydrogen Atoms
Scheme 48
Scheme 48
Reaction with Methylene C(sp3)–H Bonds
Scheme 49
Scheme 49
Hydroxamic Acid-Directed C(sp3)–H Activation
Scheme 50
Scheme 50
Optimization of Arylamide Auxiliaries in Intermolecular C(sp3)–H Arylation
Scheme 51
Scheme 51
Coordination of N-Arylamides to Pd Catalysts
Scheme 52
Scheme 52
Palladium(0)-Catalyzed Alkynylation of C(sp3)–H Bonds
Scheme 53
Scheme 53
Pd(0)/PAr3-Catalyzed Intermolecular Amination of C(sp3)–H Bonds
Scheme 54
Scheme 54
NHC Ligand-Enabled C(sp3)–H Arylation of Saturated Heterocycles
Scheme 55
Scheme 55
β-C(sp3)–H Arylation of N-Arylamides
Scheme 56
Scheme 56
Pd(II)-Catalyzed Transannular C(sp3)–H Arylation of Alicyclic Amines
Scheme 57
Scheme 57
Amide-Directed Olefination of C(sp3)–H Bonds
Scheme 58
Scheme 58
Amide-Directed Carbonylation of C(sp3)–H Bonds
Scheme 59
Scheme 59
Enantioselective C(sp3)–H Cross-Coupling using MPAA Ligands
Scheme 60
Scheme 60
Enantioselective C(sp3)–H Cross-Coupling using MPAHA Ligands
Scheme 61
Scheme 61
Ligand-Enabled Methylene C(sp3)–H Arylation
Scheme 62
Scheme 62
Catalyst-Controlled C(sp3)–H Arylation
Scheme 63
Scheme 63
Polymer-Supported Pyridine Ligands for Pd(II)-Catalyzed C(sp3)–H Arylation
Scheme 64
Scheme 64
Ligand-Enabled Cascade C–H Activation
Scheme 65
Scheme 65
Ligand-Promoted Alkylation of C(sp3)–H Bonds
Scheme 66
Scheme 66
Ligand-Enabled Fluorination of C(sp3)–H Bonds
Scheme 67
Scheme 67
Ligand-Enabled C(sp3)–H Olefination of Alanine Substrates
Scheme 68
Scheme 68
Ligand-Enabled Cross-Coupling of C(sp3)–H Bonds with Arylsilanes
Scheme 69
Scheme 69
Ligand-Promoted Borylation of C(sp3)–H Bonds
Scheme 70
Scheme 70
Ligand-Enabled γ-C(sp3)–H Activation of Carboxylic Acid Derivatives
Scheme 71
Scheme 71
Pd-Catalyzed C(sp3)–H Activation of Tf-Protected Amines Enabled by MPAA Ligands
Scheme 72
Scheme 72
Ligand-Enabled γ-C(sp3)–H Olefination of Amines
Scheme 73
Scheme 73
Pd(II)-Catalyzed β-C(sp3)–H Activation of Secondary Amines
Scheme 74
Scheme 74
Pd(II)-Catalyzed γ-C(sp3)–H Activation of Secondary Amines

References

    1. Ryabov AD. Mechanisms of Intramolecular Activation of C–H Bonds in Transition-Metal Complexes. Chem Rev. 1990;90:403–424.
    1. Arndtsen BA, Bergman RG, Mobley TA, Peterson TH. Selective Intermolecular Carbon–Hydrogen Bond Activation by Synthetic Metal Complexes in Homogeneous Solution. Acc Chem Res. 1995;28:154–162.
    1. Shilov AE, Shul’pin GB. Activation of C–H Bonds by Metal Complexes. Chem Rev. 1997;97:2879–2932. - PubMed
    1. Kakiuchi F, Murai S. Catalytic C–H/Olefin Coupling. Acc Chem Res. 2002;35:826–834. - PubMed
    1. Ritleng V, Sirlin C, Pfeffer M. Ru-, Rh-, and Pd-Catalyzed C–C Bond Formation Involving C–H Activation and Addition on Unsaturated Substrates: Reactions and Mechanistic Aspects. Chem Rev. 2002;102:1731–1770. - PubMed