Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Jul 11;7(1):15.
doi: 10.1186/s13395-017-0131-0.

Exome sequencing reveals independent SGCD deletions causing limb girdle muscular dystrophy in Boston terriers

Affiliations

Exome sequencing reveals independent SGCD deletions causing limb girdle muscular dystrophy in Boston terriers

Melissa L Cox et al. Skelet Muscle. .

Abstract

Background: Limb-girdle muscular dystrophies (LGMDs) are a heterogeneous group of inherited autosomal myopathies that preferentially affect voluntary muscles of the shoulders and hips. LGMD has been clinically described in several breeds of dogs, but the responsible mutations are unknown. The clinical presentation in dogs is characterized by marked muscle weakness and atrophy in the shoulder and hips during puppyhood.

Methods: Following clinical evaluation, the identification of the dystrophic histological phenotype on muscle histology, and demonstration of the absence of sarcoglycan-sarcospan complex by immunostaining, whole exome sequencing was performed on five Boston terriers: one affected dog and its three family members and one unrelated affected dog.

Results: Within sarcoglycan-δ (SGCD), a two base pair deletion segregating with LGMD in the family was discovered, and a deletion encompassing exons 7 and 8 was found in the unrelated dog. Both mutations are predicted to cause an absence of SGCD protein, confirmed by immunohistochemistry. The mutations are private to each family.

Conclusions: Here, we describe the first cases of canine LGMD characterized at the molecular level with the classification of LGMD2F.

Keywords: Dog; LGMD; Muscle; Myopathy; Sarcoglycanopathy.

PubMed Disclaimer

Conflict of interest statement

Ethics approval

All dogs in this study were evaluated in a clinical veterinary practice by licensed veterinarians. The dogs in this study were examined and tissue biopsies collected with the written consent of their owners. Tissue studies were performed using protocols approved by the Institutional Animal Care and Use Committees (IACUC) of Clemson University, the University of California San Diego, and the University of Iowa, and the Animal Experiment Board in Finland (ESAVI/7482/04.10.07/2015), as well as the Baden-Württemberg veterinary office at the Landratsamt Tübingen Abt. 32: Veterinärwesen und Lebensmittelüberwachung, Tübingen, Germany (Registriernummer: DE 08 416 1038 21).

Consent for publication

Not applicable

Competing interests

MC is employed by CAG GmbH that performs canine DNA testing on a commercial basis. HL is a co-founder of Genoscoper Laboratories Oy that offers canine DNA testing on a commercial basis. All other authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Histopathology of muscle biopsies from a female Boston terrier affected with sarcoglycanopathy (case 3). A hunch back stance was evident in the dog (a). H&E stained cryosections from a representative limb muscle (b) showed degenerative changes and calcific deposits (black arrow). Similar degenerative changes and calcific deposits were observed in the tongue (c). The calcific deposits in the tongue were highlighted bright orange using the alizarin stain for calcium (d)
Fig. 2
Fig. 2
Loss of SGC staining in cases 3 and 4. Representative H&E and immunofluorescence of cryosections from the muscle of cases 3 and 4, as well as of a control dog muscle. In the control muscle, antibodies to the SGC (α-, β-, δ-, γ-sarcoglycans: αSG, βSG, δSG, γSG), as well as sarcospan (SSPN), localize to the sarcolemma of the muscle fibers. Staining from each of these antibodies is reduced in muscle from cases 3 and 4
Fig. 3
Fig. 3
Representative immunofluorescence of cryosections from muscle of cases 3 and 4 and control dog muscle. Staining of α-dystroglycan (αDG), β-dystroglycan (βDG), dystrophin (DMD), caveolin 3 (CAV3), collagen VI (COL6), and perlecan (PCAN) in cases 3 and 4. Antibodies to α- and β-dystroglycans, dystrophin, caveolin 3, and perlecan demonstrate sarcolemmal localization and intensity that is comparable to control tissue. An antibody to collagen VI shows increased localization to the endomysium compared to the control tissue, consistent with endomysial fibrosis
Fig. 4
Fig. 4
Electropherogram showing the 2-bp SGCD deletion in case 3. The top panel shows the sequence from case 3, while the lower panel shows the sequence from a healthy non-related Boston terrier. The SGCD c.534_535delGA mutation leads to a frameshift and a premature stop codon two amino acids later
Fig. 5
Fig. 5
Schematic and sequence showing the breakpoints of the 19,403-bp SGCD deletion in case 1. Note that SGCD is annotated on the minus strand. Whole exome sequence from a healthy dog and case 1 are aligned to the reference genome, visualized in Golden Helix GenomeBrowse ® [21, 22]. Case 1 has no coverage of exons 7 and 8 and flanking regions. Sequence of the wild-type and case 1 alleles show the precise breakpoints. Nucleotides 5′ and 3′ of the breakpoint are in bold blue and orange typeface, respectively. A substitution (chr4:53262020-53262018, CAT > GG) is found 9 bp downstream of the microdeletion and is shown in bold red typeface

References

    1. Nigro V, Savarese M. Genetic basis of limb-girdle muscular dystrophies: the 2014 update. Acta Myologica. 2014;33:1-12. - PMC - PubMed
    1. Magri F, Brajkovic S, Brusa R, Comi GP, Govoni A. Revised genetic classification of limb girdle muscular dystrophies. Curr Mol Med. 2014;14:934-43. - PubMed
    1. Tarakci H, Berger J. The sarcoglycan complex in skeletal muscle. Front Biosci (Landmark Ed). 2016;21:744-56. - PubMed
    1. Shi W, Chen Z, Schottenfeld J, Stahl RC, Chan YM, Kunkel LM. Specific assembly pathway of sarcoglycans is dependent on beta- and delta-sarcoglycan. Muscle Nerve. 2004;29:409-19. - PubMed
    1. Trabelsi M, Kavian N, Daoud F, Commere V, Deburgrave N, Beugnet C, et al. Revised spectrum of mutations in sarcoglycanopathies. Eur J Hum Genet. 2008;16:793-803. - PubMed

Publication types

LinkOut - more resources