Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Jun:79:71-78.
doi: 10.1016/j.artmed.2017.06.009. Epub 2017 Jun 29.

Medical image classification via multiscale representation learning

Affiliations

Medical image classification via multiscale representation learning

Qiling Tang et al. Artif Intell Med. 2017 Jun.

Abstract

Multiscale structure is an essential attribute of natural images. Similarly, there exist scaling phenomena in medical images, and therefore a wide range of observation scales would be useful for medical imaging measurements. The present work proposes a multiscale representation learning method via sparse autoencoder networks to capture the intrinsic scales in medical images for the classification task. We obtain the multiscale feature detectors by the sparse autoencoders with different receptive field sizes, and then generate the feature maps by the convolution operation. This strategy can better characterize various size structures in medical imaging than single-scale version. Subsequently, Fisher vector technique is used to encode the extracted features to implement a fixed-length image representation, which provides more abundant information of high-order statistics and enhances the descriptiveness and discriminative ability of feature representation. We carry out experiments on the IRMA-2009 medical collection and the mammographic patch dataset. The extensive experimental results demonstrate that the proposed method have superior performance.

Keywords: Fisher vector; Image classification; Multiscale feature learning; Sparse autoencoder.

PubMed Disclaimer

LinkOut - more resources