Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2017 Jul 10:6:19.
doi: 10.1186/s40035-017-0089-1. eCollection 2017.

The development prospection of HDAC inhibitors as a potential therapeutic direction in Alzheimer's disease

Affiliations
Review

The development prospection of HDAC inhibitors as a potential therapeutic direction in Alzheimer's disease

Shuang-Shuang Yang et al. Transl Neurodegener. .

Abstract

Alzheimer's disease (AD) is a chronic neurodegenerative disease, which is associated with learning and memory impairment in the elderly. Recent studies have found that treating AD in the way of chromatin remodeling via histone acetylation is a promising therapeutic regimen. In a number of recent studies, inhibitors of histone deacetylase (HDACs) have been found to be a novel promising therapeutic agents for neurological disorders, particularly for AD and other neurodegenerative diseases. Although HDAC inhibitors have the ability to ameliorate cognitive impairment, successful treatments in the classic AD animal model are rarely translated into clinical trials. As for the reduction of unwanted side effects, the development of HDAC inhibitors with increased isoform selectivity or seeking other directions is a key issue that needs to be addressed. The review focused on literatures on epigenetic mechanisms in recent years, especially on histone acetylation in terms of the enhancement of specificity, efficacy and avoiding side effects for treating AD.

Keywords: Alzheimer’s disease; Efficacy; Histone deacetylase inhibitors; Side effects; Specificity.

PubMed Disclaimer

Conflict of interest statement

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Similar articles

Cited by

References

    1. Xu K, Dai XL, Huang HC, Jiang ZF. Targeting HDACs: a promising therapy for Alzheimer's disease. Oxidative Med Cell Longev. 2011;2011:143269. doi: 10.1155/2011/143269. - DOI - PMC - PubMed
    1. Zuo L, Hemmelgarn BT, Chuang CC, Best TM. The role of Oxidative stress-induced epigenetic alterations in Amyloid-beta production in Alzheimer's disease. Oxidative Med Cell Longev. 2015;2015:604658. doi: 10.1155/2015/604658. - DOI - PMC - PubMed
    1. Li X, Bao X, Wang R. Neurogenesis-based epigenetic therapeutics for Alzheimer's disease (review) Mol Med Rep. 2016;14(2):1043–1053. - PubMed
    1. Liu RT, Zou LB, Lu QJ. Liquiritigenin inhibits Abeta(25-35)-induced neurotoxicity and secretion of Abeta(1-40) in rat hippocampal neurons. Acta Pharmacol Sin. 2009;30(7):899–906. doi: 10.1038/aps.2009.74. - DOI - PMC - PubMed
    1. Fischer A. Targeting histone-modifications in Alzheimer's disease. What is the evidence that this is a promising therapeutic avenue? Neuropharmacology. 2014;80:95–102. doi: 10.1016/j.neuropharm.2014.01.038. - DOI - PubMed