Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2017 Jul 12;7(3):54.
doi: 10.3390/biom7030054.

The TOR Signaling Network in the Model Unicellular Green Alga Chlamydomonas reinhardtii

Affiliations
Review

The TOR Signaling Network in the Model Unicellular Green Alga Chlamydomonas reinhardtii

María Esther Pérez-Pérez et al. Biomolecules. .

Abstract

Cell growth is tightly coupled to nutrient availability. The target of rapamycin (TOR) kinase transmits nutritional and environmental cues to the cellular growth machinery. TOR functions in two distinct multiprotein complexes, termed TOR complex 1 (TORC1) and TOR complex 2 (TORC2). While the structure and functions of TORC1 are highly conserved in all eukaryotes, including algae and plants, TORC2 core proteins seem to be missing in photosynthetic organisms. TORC1 controls cell growth by promoting anabolic processes, including protein synthesis and ribosome biogenesis, and inhibiting catabolic processes such as autophagy. Recent studies identified rapamycin-sensitive TORC1 signaling regulating cell growth, autophagy, lipid metabolism, and central metabolic pathways in the model unicellular green alga Chlamydomonas reinhardtii. The central role that microalgae play in global biomass production, together with the high biotechnological potential of these organisms in biofuel production, has drawn attention to the study of proteins that regulate cell growth such as the TOR kinase. In this review we discuss the recent progress on TOR signaling in algae.

Keywords: Chlamydomonas; FKBP12; algae; autophagy; lipid metabolism; rapamycin; target of rapamycin (TOR).

PubMed Disclaimer

Conflict of interest statement

There are no conflicts of interest to declare.

Figures

Figure 1
Figure 1
Sensitivity of Chlamydomonas cells to rapamycin. Nomarski images of wild-type and rap2 mutant cells treated with 500 nM rapamycin for 24 h. Bleaching and pronounced vacuolization is observed in wild-type treated cells but not in the rapamycin-resistant mutant rap2, which lacks the FKBP12 (FK506-binding protein of 12 kDa) protein. Scale bar, 10 μm. Adapted from [13].
Figure 2
Figure 2
Proposed model of target of rapamycin (TOR) signaling in Chlamydomonas. A rapamycin-sensitive TORC1 complex composed by TOR, LST8, and Raptor/KOG1 is conserved in Chlamydomonas, whereas TORC2 core components are missing in this model alga. Inhibition of Chlamydomonas TORC1 signaling by rapamycin-FKBP12 activates autophagy, promotes the accumulation of TAGs and the formation of lipid bodies, inhibits protein synthesis, and blocks central metabolic pathways such as the TCA cycle. TORC1 may control these processes by perceiving nutrient (carbon, nitrogen) availability and the intracellular level of inositol polyphosphates. Solid lines indicate interactions that have been experimentally demonstrated (red, inhibition), while links represented by dashed arrows need to be tested. Rap, rapamycin; InsPs, inositol polyphosphates; TAGs, triacylglycerols; TCA, tricarboxylic acid.

Similar articles

Cited by

References

    1. Heitman J., Movva N.R., Hall M.N. Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science. 1991;253:905–909. doi: 10.1126/science.1715094. - DOI - PubMed
    1. Dobrenel T., Caldana C., Hanson J., Robaglia C., Vincentz M., Veit B., Meyer C. TOR signaling and nutrient sensing. Annu. Rev. Plant Biol. 2016;67:261–285. doi: 10.1146/annurev-arplant-043014-114648. - DOI - PubMed
    1. Gonzalez A., Hall M.N. Nutrient sensing and TOR signaling in yeast and mammals. EMBO J. 2017;36:397–408. doi: 10.15252/embj.201696010. - DOI - PMC - PubMed
    1. Saxton R.A., Sabatini D.M. mTOR signaling in growth, metabolism, and disease. Cell. 2017;168:960–976. doi: 10.1016/j.cell.2017.02.004. - DOI - PMC - PubMed
    1. Soulard A., Cohen A., Hall M.N. TOR signaling in invertebrates. Curr. Opin. Cell Biol. 2009;21:825–836. doi: 10.1016/j.ceb.2009.08.007. - DOI - PubMed

Publication types

MeSH terms

Substances

LinkOut - more resources