Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Sep:134:55-62.
doi: 10.1016/j.brainresbull.2017.07.002. Epub 2017 Jul 10.

Glial-associated changes in the cerebral cortex after collagenase-induced intracerebral hemorrhage in the rat striatum

Affiliations

Glial-associated changes in the cerebral cortex after collagenase-induced intracerebral hemorrhage in the rat striatum

J D Neves et al. Brain Res Bull. 2017 Sep.

Abstract

Striatum and the cerebral cortex are regions susceptible to secondary injury after intracerebral hemorrhage (ICH) and glial cells in tissue adjacent to the hematoma may modulate cellular vulnerability after brain damage. Nonetheless, while the glial- associated changes occurring in the cerebral cortex after ICH may be important in maximizing brain recovery, they are not fully understood. The aim of this study was to evaluate the temporal profile of glial-associated changes in the cerebral cortex after ICH. First, the motor consequences of ICH and its relation to the lesion volume were analyzed. Secondly, glial cell proportion (GFAP+ and S100B+ astrocytes, CD11+ microglia) in the ipsilesional sensorimotor cortex and striatum, using flow cytometry were evaluated. ELISA was used to measure GFAP and S100B content in these structures as well as S100B levels in serum and cerebral spinal fluid. Main results revealed that ICH induced a delayed increase in GFAP+ cells in the sensorimotor cortex, as compared to the striatum, although the pattern of GFAP expression was similar in both structures. Interestingly, the time-curve patterns of both S100B and CD11+ microglial cells differed between the cortex and striatum. Altogether, these results suggest a different dynamics of glial-associated changes in the cerebral cortex, suggesting it is a vulnerable structure and undergoes an independent secondary process of reactive glial plasticity following intracerebral hemorrhage.

Keywords: Cellular events; Cortex; Glial changes; Hemorrhagic stroke; Striatum.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources