Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2019:166:411-425.
doi: 10.1007/10_2016_62.

Microbial Hydrocarbon Formation from Biomass

Affiliations
Review

Microbial Hydrocarbon Formation from Biomass

Adrie J J Straathof et al. Adv Biochem Eng Biotechnol. 2019.

Abstract

Fossil carbon sources mainly contain hydrocarbons, and these are used on a huge scale as fuel and chemicals. Producing hydrocarbons from biomass instead is receiving increased attention. Achievable yields are modest because oxygen atoms need to be removed from biomass, keeping only the lighter carbon and hydrogen atoms. Microorganisms can perform the required conversions, potentially with high selectivity, using metabolic pathways that often end with decarboxylation. Metabolic and protein engineering are used successfully to achieve hydrocarbon production levels that are relevant in a biorefinery context. This has led to pilot or demo processes for hydrocarbons such as isobutene, isoprene, and farnesene. In addition, some non-hydrocarbon fermentation products are being further converted into hydrocarbons using a final chemical step, for example, ethanol into ethene. The main advantage of direct microbial production of hydrocarbons, however, is their potentially easy recovery because they do not dissolve in fermentation broth.

Keywords: Gaseous products; Isoprenoids; Product recovery; Yields.

PubMed Disclaimer

LinkOut - more resources