Functional Roles of the Ca2+-activated K+ Channel, KCa3.1, in Brain Tumors
- PMID: 28707595
- PMCID: PMC5997864
- DOI: 10.2174/0929867324666170713103621
Functional Roles of the Ca2+-activated K+ Channel, KCa3.1, in Brain Tumors
Abstract
Background: Glioblastoma is the most aggressive and deadly brain tumor, with low disease-free period even after surgery and combined radio and chemotherapies. Among the factors contributing to the devastating effect of this tumor in the brain are the elevated proliferation and invasion rate, and the ability to induce a local immunosuppressive environment. The intermediateconductance Ca2+-activated K+ channel KCa3.1 is expressed in glioblastoma cells and in tumorinfiltrating cells.
Methods: We first describe the researches related to the role of KCa3.1 channels in the invasion of brain tumor cells and the regulation of cell cycle. In the second part we review the involvement of KCa3.1 channel in tumor-associated microglia cell behaviour.
Results: In tumor cells, the functional expression of KCa3.1 channels is important to substain cell invasion and proliferation. In tumor infiltrating cells, KCa3.1 channel activity is required to regulate their activation state. Interfering with KCa3.1 activity can be an adjuvant therapeutic approach in addition to classic chemotherapy and radiotherapy, to counteract tumor growth and prolong patient's survival.
Conclusion: In this mini-review we discuss the evidence of the functional roles of KCa3.1 channels in glioblastoma biology.
Keywords: 1-[(2-Chlorophenyl)diphenylmethyl]-1H-pyrazole (TRAM-34); Glioblastoma Multiforme (GBM); Intermediate conductance Ca2+-activated K+ channel (KCa3.1); brain tumors; invasion; microglia; proliferation..
Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Figures
Similar articles
-
KCa3.1 channels are involved in the infiltrative behavior of glioblastoma in vivo.Cell Death Dis. 2013 Aug 15;4(8):e773. doi: 10.1038/cddis.2013.279. Cell Death Dis. 2013. PMID: 23949222 Free PMC article.
-
KCa3.1 Channels and Glioblastoma: In Vitro Studies.Curr Neuropharmacol. 2018;16(5):627-635. doi: 10.2174/1570159X15666170808115821. Curr Neuropharmacol. 2018. PMID: 28786347 Free PMC article. Review.
-
Effects of Intermediate-Conductance Ca(2+)-Activated K(+) Channels on Human Endometrial Carcinoma Cells.Cell Biochem Biophys. 2015 Jun;72(2):515-25. doi: 10.1007/s12013-014-0497-0. Cell Biochem Biophys. 2015. PMID: 25608633
-
Role of KCa3.1 Channels in Modulating Ca2+ Oscillations during Glioblastoma Cell Migration and Invasion.Int J Mol Sci. 2018 Sep 29;19(10):2970. doi: 10.3390/ijms19102970. Int J Mol Sci. 2018. PMID: 30274242 Free PMC article. Review.
-
KCa3.1 Channel Modulators as Potential Therapeutic Compounds for Glioblastoma.Curr Neuropharmacol. 2018;16(5):618-626. doi: 10.2174/1570159X15666170630164226. Curr Neuropharmacol. 2018. PMID: 28676010 Free PMC article.
Cited by
-
A machine learning-derived angiogenesis signature for clinical prognosis and immunotherapy guidance in colon adenocarcinoma.Sci Rep. 2025 May 31;15(1):19126. doi: 10.1038/s41598-025-03920-w. Sci Rep. 2025. PMID: 40450107 Free PMC article.
-
Ca2+-activated K+ channels modulate microglia affecting motor neuron survival in hSOD1G93A mice.Brain Behav Immun. 2018 Oct;73:584-595. doi: 10.1016/j.bbi.2018.07.002. Epub 2018 Jul 3. Brain Behav Immun. 2018. PMID: 29981425 Free PMC article.
-
Deeper and Deeper on the Role of BK and Kir4.1 Channels in Glioblastoma Invasiveness: A Novel Summative Mechanism?Front Neurosci. 2020 Nov 30;14:595664. doi: 10.3389/fnins.2020.595664. eCollection 2020. Front Neurosci. 2020. PMID: 33328867 Free PMC article. Review.
-
Potassium Ion Channels in Glioma: From Basic Knowledge into Therapeutic Applications.Membranes (Basel). 2023 Apr 15;13(4):434. doi: 10.3390/membranes13040434. Membranes (Basel). 2023. PMID: 37103862 Free PMC article. Review.
-
CRAC and SK Channels: Their Molecular Mechanisms Associated with Cancer Cell Development.Cancers (Basel). 2022 Dec 23;15(1):101. doi: 10.3390/cancers15010101. Cancers (Basel). 2022. PMID: 36612099 Free PMC article. Review.
References
-
- Morales P., Garneau L., Klein H., Lavoie M.F., Parent L., Sauvé R. Contribution of the KCa3.1 channel-calmodulin interactions to the regulation of the KCa3.1 gating process. J. Gen. Physiol. 2013;142(1):37–60. [http://dx.doi.org/10.1085/jgp. 201210933]. [PMID: 23797421]. - PMC - PubMed
-
- Joiner W.J., Khanna R., Schlichter L.C., Kaczmarek L.K. Calmodulin regulates assembly and trafficking of SK4/IK1 Ca2+-activated K+ channels. J. Biol. Chem. 2001;276(41):37980–37985. [PMID: 11495911]. - PubMed
-
- Ghanshani S., Wulff H., Miller M.J., Rohm H., Neben A., Gutman G.A., Cahalan M.D., Chandy K.G. Up-regulation of the IKCa1 potassium channel during T-cell activation. Molecular mechanism and functional consequences. J. Biol. Chem. 2000;275(47):37137–37149. [http://dx.doi.org/10.1074/jbc.M003941200]. [PMID: 10961988]. - PubMed
-
- Wulff H., Castle N.A. Therapeutic potential of KCa3.1 blockers: recent advances and promising trends. Expert Rev. Clin. Pharmacol. 2010;3(3):385–396. [http://dx.doi.org/10.1586/ecp.10.11]. [PMID: 22111618]. - PMC - PubMed
-
- Logsdon N.J., Kang J., Togo J.A., Christian E.P., Aiyar J. A novel gene, hKCa4, encodes the calcium-activated potassium channel in human T lymphocytes. J. Biol. Chem. 1997;272(52):32723–32726. [http://dx.doi.org/10.1074/jbc.272.52.32723]. [PMID: 9407042]. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Miscellaneous